








used to build predictive maps of the global dis-
tributions of these bacterial clusters at a global
scale. We did so for the four major ecological
clusters (i.e., low pH, high pH, drylands, and low
productivity, Fig. 4) (20) using the prediction-
oriented regression model Cubist (28) and in-
formation on 12 environmental variables for
which we could acquire globally distributed in-
formation (20). Our models confirm that pH,
aridity levels, and net primary productivity are
major drivers of the low-pH, high-pH, dryland,
and low-productivity clusters observed, respec-
tively (Appendix S1). Notably, our maps (which
accounted for 36 to 64% of the spatial variation
in these clusters, Fig. 4) provide estimates of the
regions where we would expect the groups of
dominant soil bacterial phylotypes to be most
abundant (Fig. 4). As expected, the dryland and
low-productivity clusters were relatively abun-
dant in dryland and low-productivity regions
across the globe, and the low- and high-pH
clusters were particularly abundant in areas
known for their low- or high-pH soils, respectively.
This global inventory of dominant soil bacte-

rial phylotypes represents a small subset of phylo-
types that account for almost half of the 16S rRNA
sequences recovered from soils. We show that we
can predict the environmental preferences for
more than half of these dominant phylotypes,
making it possible to predict how future envi-

ronmental change will affect the spatial distribu-
tion of these taxa. Following Grime’s mass ratio
hypothesis (10), we would expect that identify-
ing the physiological attributes of these dom-
inant taxa will be critical for improving our
understanding of themicrobial controls on some
key soil processes, including those that regulate
soil C and nutrient cycling (1–3, 29). Also, given
the strong links between the distribution of bac-
terial phylotypes and their functional attributes
across the globe (8, 12), and the observed asso-
ciations between dominant and subdominant
phylotypes (fig. S5), we expect that these domi-
nant bacteria will be critical drivers, or indica-
tors, of key soil processes worldwide. We also
found that habitat preferences were not predict-
able from phylum-level identity alone, given that
all of the ecological clusters included phylotypes
frommultiple phyla. This suggests that phylotypes
from diverse taxa share some phenotypic traits
(e.g., osmoregulatory capabilities) or life-history
strategies (29, 30) that allow them to survive
under particular environmental conditions. By
narrowing down the number of phylotypes to
be targeted in future studies from tens of thou-
sands to a few hundred, our study paves the
way for amore predictive understanding of soil
bacterial communities, which is critical for accu-
rately forecasting the ecological consequences of
ongoing global environmental change.
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Fig. 4. A global atlas of the dominant bacteria found in soil.
(A to D) Predicted global distribution of the relative abundances of the
four major ecological clusters of bacterial phylotypes sharing habitat
preferences for high pH, low pH, drylands, and low plant productivity.
R2 (percentage of variation explained by the models) as follows:

(i) high-pH cluster, R2 = 0.53, P < 0.001; (ii) low-pH cluster, R2 = 0.36,
P < 0.001; (iii) drylands cluster, R2 = 0.64, P < 0.001; and (iv) low-
productivity cluster, R2 = 0.40, P < 0.001. The scale bar represents the
standardized abundance ( z-score) of each ecological cluster. An
independent cross-validation for these maps is available in ( 20).
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findings will allow for a more predictive understanding of soil bacterial diversity and distribution.
dominant taxa could be clustered into ecological groups of co-occurring bacteria that share habitat preferences. The
found that only 2% of bacterial taxa account for nearly half of the soil bacterial communities across the globe. These 

 provide a survey of the dominant bacterial taxa found around the world. In soil collections from six continents, theyal.
etHowever, the natural histories and distributions of these organisms remain largely undocumented. Delgado-Baquerizo 

Soil bacteria play key roles in regulating terrestrial carbon dynamics, nutrient cycles, and plant productivity.
A global map of soil bacteria
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