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Abstract  

The role of climatic legacies in regulating community assembly of above- and below-ground 

species in terrestrial ecosystems remains largely unexplored and poorly understood. Here, 

we report on two separate regional and continental empirical studies, including >500 

locations, aiming to identify the relative importance of climatic legacies (climatic anomaly 

over the last 20k years) compared to current climates in predicting the relative abundance 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

of ecological clusters formed by species strongly co-occurring within two independent 

above- and below-ground networks. Climatic legacies explained a significant portion of the 

variation in the current community assembly of terrestrial ecosystems (up to 15.4%) that 

could not be accounted for by current climate, soil properties and management. Changes in 

the relative abundance of ecological clusters linked to climatic legacies (e.g., past 

temperature) showed the potential to indirectly alter other clusters, suggesting cascading 

effects. Our work illustrates the role of climatic legacies in regulating ecosystem community 

assembly and provides further insights into possible winner and loser community assemblies 

under global change scenarios. 

 

Keywords: Paleoclimate, Bacteria, Fungi, Plants, Animals, Terrestrial ecosystems, Ecological 

networks.  

 

Introduction  

Current climate is known to be one of the major environmental filters shaping above and 

belowground community assemblies (Schleuning et al. 2016), as particular groups of species 

only occur under specific ranges of precipitation and/or temperature. Nevertheless, climatic 

conditions are dynamic, and have been shown to shift profoundly over millennia. 

Consequently, paleoclimatic filtering might have left a strong signature on the current 

above- (plants and animals) and below-ground (bacteria, fungi, protists and soil 

invertebrates) community assemblies found within ecological networks across entire 

terrestrial ecosystems. Although such an argument is intuitive conceptually, the relative 

importance of paloclimatic legacies (i.e., temperature and precipitation differences from the 

present to ~20k years ago; Fordham et al. 2017) compared with current climate filtering in 

predicting the assembly of entire ecological network of above- and below-ground 

communities has never been explicitly tested. Furthermore, no large scale studies have 

addressed this important research question. Here, we tested the hypothesis that historical 

climatic legacies (hereafter ‘climatic legacies’) explain important parts of the variation in 

ecosystem aboveground and belowground community patterns found within ecological 

networks that cannot be accounted for by current climates. 
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Studies over the past two decades provide strong evidence that climatic changes, 

since the last glaciation about 10k years ago (Fordham et al. 2017), are partly responsible for 

the current distribution of plants, animals and microbial communities in terrestrial 

ecosystems globally (Atkinson et al. 1987; Svenning J-C. et al. 2015; Lyons et al. 2016; 

Delgado-Baquerizo et al. 2017; Partel et al. 2017). Recent studies have also provided solid 

evidence that a knowledge of climatic legacies, can improve our predictions of the current 

distribution of specific groups of organisms including plants and microbes (Schleuning et al. 

2016; Delgado-Baquerizo et al. 2017; Partel et al. 2017). Much less is known on the role of 

climatic legacies in driving ecological networks of above- and below-ground organisms. Plant 

and soil microbial communities comprise two components of the most important terrestrial 

food webs: aboveground and belowground. The first is essential for the provision of food 

and fibre and the second supports key soil processes such as litter decomposition and 

nutrient cycling, which in turn, supports plant productivity (Wardle et al. 2004; Hooper et al. 

2000; de Vries et al. 2012). Because of their enormous functional importance, identifying 

new predictors that help explain the distribution of entire biotic community assemblies is 

one of the major endeavours in which scientists are immersed today. Moreover, future 

projections are conditional upon the past. Thus, a demonstrable link between climatic 

legacies and current ecosystem community assemblies found within ecological networks 

would improve our capacity to predict how entire ecosystem community assemblies might 

respond to forecasted climate change, and the extent to which climatic changed might 

affect the myriad ecosystem services these communities provide. 

 

Given the strong links between climatic legacies and the current distribution of 

particular groups of soil microbes and plants (Schleuning et al. 2016; Delgado-Baquerizo et 

al. 2017; Partel et al. 2017), we hypothesized that past climates might have triggered the 

current above- and belowground community assemblies in terrestrial ecosystems, i.e., the 

identity and abundance of coexisting multitrophic species within ecological networks that 

occur today. For example, locations with a positive anomaly in temperature or precipitation 

over the last 20k years might have resulted in a completely different biotic community 

assembly compared with locations with a negative anomaly or no change in temperature or 

precipitation, even if all these locations share the same current climate. If climatic legacies 

play a role in regulating the current network of ecological interactions, then climatic legacies 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

might help to explain particular community assemblies that cannot be explained using only 

current climate data. This unexplained variation has hitherto generally been ascribed to 

stochasticity (e.g., Powell et al. 2015). Thus, climatic legacies might help us to explain why 

two locations with a similar current climate do not always lead to exactly the same 

community assembly.  

 

We argue that Australia is one of the best locations on Earth to identify the role of 

climatic legacies in driving current ecosystem community assembly for three reasons. First, 

Australia has a long history of aboriginal occupation (> 60k years), characterised by a semi-

sedentary, hunter-gatherer lifestyle (Hubble et al. 1983). Compared with other continents, 

Australia has a relatively recent history of European occupation (~ 200 years) and therefore 

a short history of intensive agriculture. Because of a short European history, more than 90% 

of Australia’s land mass is still occupied by native vegetation and less than 6% is arable. 

Therefore, compared with other continents, the network of ecological interactions in 

Australian ecosystems is more likely to resemble those that existed prior to large-scale 

agricultural management. Second, contemporary agricultural land use in Australia is 

predominantly livestock grazing and cropping, and statistical models are able to account for 

the impacts of both land uses on our conclusions. Finally, given its continental scale, 

Australia experienced a wide range of climatic legacies over the past 20k years, including 

both positive and negative anomalies in temperature and precipitation variables (see 

examples in Fig. S1). Consequently, Australia provides enough statistical variability to enable 

us to answer our primary research questions.  

 

Herein, we used a combination of ecological network analyses and statistical 

modelling to evaluate the relative importance of climatic legacies compared to current 

climates in predicting the relative abundance of particular ecological clusters of strongly co-

occurring species. Intuitively, we would expect these clusters to include species across 

multiple trophic levels and to be good surrogates of exclusive ecosystem community 

assemblies. We also aimed to identify the most important climatic legacies explaining the 

relative abundance of these ecological clusters and describe examples of specific species-

species interactions within these clusters across different trophic groups (predator/prey) 

and associations (host/symbiont). To address our research questions, we used two 
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independent datasets from Australia, which included >500 locations at both regional and 

continental scales. The first dataset, which included information, from 108 “natural” 

locations in eastern Australia on the composition of plant and animal species, was used to 

build an aboveground (plants and animals) correlation network. The second dataset, 

including 375 “natural” and 60 cultivated locations across mainland Australia, contained 

information on the composition of soil bacteria and eukaryotes (fungi, protists and soil 

invertebrates). This dataset was used to build a belowground correlation network.  

 

Materials and Methods 

Aboveground network 

Our aboveground network study was conducted at 108 sites across a large area (> 500 km2) 

of eastern Australia (Fig. S1). This survey was undertaken in three semi-natural woodland 

communities dominated by blackbox (Eucalyptus largiflorens), white cypress pine (Callitris 

glaucophylla) and river red gum (Eucalyptus camaldulensis). These three communities 

include sites used extensively for livestock grazing, large areas dedicated to conservation 

(national parks, nature reserves) and smaller areas devoted to native forestry, but excluded 

any areas that were cultivated or supported crops. In these locations, we undertook 

multiple vegetation and animal surveys targeting grasses, forbs, woody plants, birds, 

mammals, reptiles, amphibians and invertebrates (see Appendix S1 for sampling details).  

 

Belowground network 

We used a subset of sample locations from the Biome of Australia Soil Environments (BASE) 

project (Fig. S1) for our belowground network (soil bacteria, fungi, protists and soil 

invertebrates). This subset includes data on the composition of bacterial, fungal and 

eukaryotic communities across 439 locations belonging to “natural” (379) and agricultural 

(60) (wheat and cotton crops) ecosystems from Australia. Samples were collected between 

2011 and 2014. In each location, a 25 x 25m plot was established. Soil samples (top 10cm) 

were collected according to the methods described in Bissett et al. (2016). The community 

composition of soil bacteria, fungi, protists and soil invertebrates was determined using 

amplicon sequencing with the Illumina Miseq platform (see Appendix S2 for details).  
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Climate data 

For all sites surveyed, we obtained six climatic variables for current climate and climate in 

the Last Glacial Maximum from the Worldclim database (www.worldclim.org) (Hijmans et 

al. 2005). These variables include mean precipitation (MAP), maximum and minimum 

temperature (MAXT and MINT), mean annual precipitation and temperature seasonality 

(PSEA and TSEA) and mean diurnal temperature range (MDR). We selected these six 

variables as they provide a good approximation of the quantity and variability of precipitation 

and temperature. In addition, these six variables did not suffer from strong multi-collinearity 

(Pearson’s r < 0.8; Katz 2006). In the case of Last Glacial Maximum climate, we used 

estimates provided by the Community Climate System Model (CCSM4; www.worldclim.org) 

(Bystriakova et al. 2013; Tallavaara et al. 2015). We used data at a 2.5 minutes resolution 

(~4.5km at Equator), as this is the highest resolution available for the Last Glacial Maximum 

period. Previous studies have demonstrated that the Last Glacial Maximum information used 

here, largely resemble information coming from other climatic models (Delgado-Baquerizo et 

al. 2016a) and spatial and temporal resolutions (Delgado-Baquerizo et al. 2017).  

 

Climatic legacies 

Climatic legacies were calculated as the differences between an estimate of six climatic 

variables (amount and variability in precipitation and seasonality) 20k ybp and another 

estimate for these variables at the present day (Fordham et al. 2017) as shown in Delgado-

Baquerizo et al. (2017). In particular, the climatic legacy for each climatic variable is 

calculated as the mathematical difference in the values for each climatic variable from Last 

Glacial Maximum and current climates (e.g., Annual precipitationCurrent climate - Annual 

precipitationLast Glacial Maximum) for each site. This difference provides us with a measure of 

climatic legacies; increases, declines or a lack of change in a particular climatic condition 

with time- in each of the sites surveyed from the different datasets. A recent cross-

validation of the climatic legacy indexes used here is given in Appendices 1-3 in Delgado-

Baquerizo et al. (2017) and Appendix S1 in Delgado-Baquerizo et al. (2016a). Note that the 

climatic legacy index used here is based on the differences between two single snapshots in 

time (Current vs. Last Glacial Maximum climates), thus calculation of climate legacy comes 

with a number of inherent and important assumptions (Fordham et al. 2017). For example, 

although we assume that change in precipitation and temperature gradually occurred with 

time during last 21k years, we would like to acknowledge that most abrupt changes in 
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climate occurred prior to 10k YBP (see Fordham et al. 2017). Even so, our climatic legacy 

index still allowed us to address our research question of whether the signature of climatic 

legacies on the network of interactions of aboveground and belowground can still be 

detected today. Further discussion on this point is available at Appendices 1-3 in Delgado-

Baquerizo et al. (2017).  

 

Soil properties and current management  

Soil properties including texture (% sand content), pH, soil C and P were available from the 

two datasets used here (Appendix S3). Current management including intensity of grazing 

by cattle and the incidence of cropping (only applicable to the belowground dataset) was 

included in our statistical models (see below) to account for impacts from recent 

management in the network of interactions of aboveground and belowground. We used 

cattle density as our proxy of current management as grazing by cattle is one of the major 

drivers of grazing-induced degradation in Australia over the past 200 years (see Appendix S3 

for details).  

 

Network analyses  

Network analyses were conducted separately for the aboveground and belowground 

network Australian datasets. In both cases, we identified ecological clusters of strongly 

associated taxa using correlation networks (‘co-occurrence network’) and the following 

protocol. Our aboveground network contained 1280 nodes (species of vascular plants, 

mammals, birds, reptiles, amphibians, ants, beetles, centipedes, cockroaches, crickets, 

scorpions and spiders). In the case of the belowground networks, our datasets included 

95,208 Operational Taxonomic Units (OTUs) of bacteria, fungi, protists and soil 

invertebrates. These OTUs (aka phylotypes) were calculated at 97% sequence similarity and 

can be considered to be analogous to “species”. However, because of the large number of 

microbial ‘species’ compared with other groups (plants and animals) and the need to restrict 

analyses to a manageable network of interactions, we focused on the dominant microbial 

OTUs (top 10% species sorted by dominance, as described in Soliveres et al. 2016). 

Dominant species for bacteria, fungi and other eukaryotes were obtained independently for 

these organisms from their original OTU tables. These bacterial, fungal and other eukaryotic 

taxa were then merged into a single abundance table. This resulted in a dataset with 9502 
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taxa including 4953 bacteria (~80% of all bacterial phylotypes), 2321 fungi (~80% of all 

fungal phylotypes) and 2228 other eukaryotes phylotypes (~80% of all eukaryotic 

phylotypes). We then calculated all pairwise Spearman’s rank correlations (ρ) between all 

soil plant/animal and soil microbe/animal taxa. We focused exclusively on positive 

correlations as they provide information on microbial taxa that may respond similarly to 

environmental conditions (Barberan et al. 2012). We considered a co-occurrence to be 

robust if the Spearman’s correlation coefficient ρ was > 0.50 and P < 0.01 (see Barberan et 

al. 2012 for a similar approach). The network was visualized with the interactive platform 

Gephi (Bastian et al. 2009). Finally, we used default parameters from the interactive 

platform Gephi to identify ecological clusters (aka modules) of soil taxa strongly interacting 

with each other (Bastian et al. 2009). We then computed the relative abundance of each 

ecological cluster by averaging the standardized relative abundances (z-score) of the taxa 

that belong to each ecological cluster. By standardizing our data, we ruled out any effect of 

merging data from different soil groups: plants/animals and soil microbes/animals. In 

addition, we also used an alternative approach and calculated the relative abundance of 

ecological clusters after centered log-ratio transformation. Information on functional traits 

for fungal taxa within each ecological cluster (which is unavailable for bacteria), was 

obtained from the online application FUNGuild described in Nguyen et al. (2016). 

 

Variation partitioning modelling 

We used Variation Partitioning (Legendre et al. 2008) to quantify the relative importance of 

four groups of predictors: 1) six climatic legacies, 2) six climatic variables from current 

climate, 3) current management (cattle density in regional Australia and cattle density and 

cropping in continental Australia) and 4) soil properties (pH, % of sand, soil C and P) as 

predictors of the relative abundance of ecological clusters in the (1) Aboveground network 

and (2) Belowground network. This analysis allowed us to identify whether climatic legacies 

can explain a unique portion of the variance that is not explained by current climate or 

management (Legendre et al. 2008). Note that adjusted coefficients of determination (R2) in 

multiple regression and canonical analysis can, on occasion, take negative values (Legendre 

et al. 2008). Negative values in the variance explained for a group of predictors on a group 

of response variable are interpreted as zeros, and correspond to cases in which the 

explanatory variables explain less variation than that explained using random normal 
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variables (Legendre et al. 2008). In all cases, Variation Partitioning analyses were conducted 

with the R package Vegan (Oksanen et al. 2015).  

 

Random Forest modelling 

We conducted a classification Random Forest analysis (Breiman 2001) as described in 

Delgado-Baquerizo et al. (2016b) to identify the major predictors of the relative abundance 

of ecological clusters in the two networks. Our list of predictors included six climatic 

legacies, six climatic variables from current climate, soil properties (pH, % of sand, soil C and 

P) and current management (cattle density and/or cropping). These analyses were 

conducted using the rfPermute package (Archer et al. 2016) of the R statistical software 

(http://cran.r-project.org/). We also repeated these analyses using an alternative Random 

Forest approach using the gradientforest R package (Strobl et al. 2008; Ellis et al. 2012).  

 

Structural equation modeling 

We used structural equation modeling (SEM) (Grace 2006) to evaluate effects of climatic 

legacies (i.e., temperature and precipitation differences between estimated climate about 

20k ybp and current climatic estimates) on the relative abundance of ecological clusters in 

the two networks, after accounting for spatial autocorrelation (latitude and longitude), soil 

properties (pH, % of sand, soil C and P), current management (cattle density and/or 

cropping) and current climate. Our a priori model is shown in Fig. S3. The use of SEM is 

particularly useful in large scale correlative studies, as it allows the partitioning of causal 

influences among multiple variables, and separation of the direct and indirect effects of 

model predictors (Grace 2006). We then tested the goodness of fit of our models. The 

goodness of fit of SEM models was checked following Schermelleh-Engel et al. (2003). There 

is no single universally accepted test of overall goodness of fit for SEM, applicable in all 

situations regardless of sample size or data distribution (Schermelleh-Engel et al. 2003). We 

used the χ2 test (χ2; the model has a good fit when 0 ≤ χ2/DF≤2 and 0.05 <P ≤ 1.00) and the 

root mean square error of approximation (RMSEA; the model has a good fit when RMSEA 0 

≤ RMSEA ≤ 0.05 and 0.10 <P ≤ 1.00) (Schermelleh-Engel et al. 2003). Our a priori models 

attained an acceptable/good fit by all criteria in all cases, and thus no post hoc alterations 

were made. With a good model fit, we were free to interpret the path coefficients of the 
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model and their associated P values. SEM models were conducted with the software AMOS 

20 (IBM SPSS Inc, Chicago, IL, USA).  

 

Results  

We first generated two separate ecological networks for 1) aboveground and 2) 

belowground using information from the two independent datasets. Using the approach 

described in the Methods section, we identified and calculated the relative abundance of six 

and seven major ecological clusters of species co-occurrence for aboveground and 

belowground networks, respectively (Fig. 1). All taxa included within each ecological cluster 

for the two networks, and additional functional information on these taxa, are shown in 

Figs. S4 and S5 and Table S1. These ecological clusters include multiple species linked by 

potential ecological interactions such as predator/prey, host/parasite, host/symbiont, as 

well as different tropic levels, e.g., primary producers and primary consumers (Table S1; Figs 

S4 and S5). We found a highly significant correlation between the relative abundance of the 

ecological clusters calculated as explained above and the same clusters calculated after 

using the centered log-ratio transformation (ρ > 0.90; P < 0.001; Table S2).  

 

Our variation partitioning model suggested that climatic legacies explained a unique 

portion of the variation for particular ecological clusters that could not be accounted for by 

measures of current management, soil properties or current climates (Fig. 1). Climatic 

legacies explained a unique and significant portion of the variation of ecological clusters in 

five out of six ecological clusters for our aboveground network (AG#) and for seven out of 

seven ecological clusters for our belowground network (BG#) (Fig. 1; Table S3). This was 

especially noticeable for AG#1 (6 out of 58% of variation explained) and for BG#1 (7.5 out of 

68% of variation explained) and BG#3 (15.5 out of 47% of variation explained). As expected, 

current climate and soil properties, routinely proposed as the dominant drivers of 

ecosystem community assembly at large spatial scales, also explained a unique portion of 

the variation in all ecological clusters (Fig. 1; Table S3). Management was also important for 

some clusters (BG#0, 1, 5 and 6), but not for others (Fig. 1; Table S3).  
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Our Random Forest analyses suggested that climatic legacies were as important as, 

or more important than, current climate in predicting the relative abundance of ecological 

clusters within our two networks, and after accounting for soil properties and management 

(Figs. S6-S9). Temperature legacies, maximum temperature (MAXT) and temperature 

seasonality (TSEA), were more consistent than precipitation legacies in predicting the 

relative abundance of ecological clusters within the aboveground and belowground 

networks (Figs. S6-S9). However, mean precipitation (MAP) and precipitation seasonality 

(PSEA) were also reported to be a key climatic legacy predicting the relative abundance of 

ecological assemblies in both ecological networks (Figs. S6-S9). These results suggest that 

climatic legacies have left a detectable signature on the contemporary ecosystem 

community assembly of unique clusters of plant, animal and microbial species strongly co-

occurring with each other (Table S1; Figs S4 and S5). Importantly, we found a statistically 

significant correlation between the Random Forest importances across predictors calculated 

from each ecological cluster using the rfPermute and gradientforest R packages (Table S4).  

 

We used SEM, to further clarify the role of climatic legacies in predicting the relative 

abundance of contemporary ecosystem community assemblies, independently, for our two 

datasets. Although this is quite a conservative procedure, we still found multiple direct 

effects of climatic legacies, from all climatic variables studied, on the relative abundance of 

particular ecological clusters in both networks (Fig. 2). Remarkably, increases in maximum 

temperature legacies had a direct positive effect on the relative abundance of AG#1 and 

BG#1. In other words, locations with a positive anomaly for maximum temperature over the 

past ~20k years might have promoted the relative abundance of species within AG#1 and 

BG#1 (Fig. 3). Other highly significant climatic legacy effects also included a direct negative 

effect of temperature seasonality on the relative abundance of AG#2, and direct positive 

effects of diurnal temperature range (MDR) and TSEA on BG#2 and 0. Note that for 

simplicity, Figure 2 only included direct effects with a P < 0.01 (see Table S5 for direct effects 

with a < 0.01 P < 0.05). Remarkably, increases in a given ecological cluster were often 

followed by declines in the relative abundance of other ecological clusters, as supported by 

the multiple indirect effects among the relative abundance of ecological clusters in our 

aboveground and microbe-animal networks (e.g., AG/BG#2 vs. AG/BG#3)(Fig. 2 and 3). 
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Moreover, we also detected multiple indirect effects of climatic legacies on the relative 

abundance of ecological clusters via changes in soil properties for the two studied (Fig. 2).  

 

Discussion 

Our findings provide novel evidence that past climates likely played an important role in 

regulating the relative abundance of the major ecosystem community assemblages that we 

observe today, helping to explain a unique portion of the variation in the distribution of 

particular communities that has generally been attributed to stochasticity (e.g. Powell et al. 

2015). More specifically, climatic legacies might regulate the relative abundance of multiple 

ecological clusters formed by species strongly co-occurring within two independent above- 

and below-ground networks (shown in Table S1). These co-occurring taxa included multiple 

potential ecological interactions such as predator/prey, host/parasite, host/symbiont, as 

well as different tropic levels, e.g. primary producers and primary consumers (Table 1; Figs 

S3 and S4). For example, AG#1 contains multiple potential predator/prey interactions 

including (1) those of the birds species Struthidea cinerea and Turnix velox, with multiple 

potential plant and arthropod preys (Table 1; Table S1), (2) those from the barking spider 

(Selenocosmia stirlingi) and the scorpion (Lychas jonesae) with the abundance of potential 

ant, beetle and cricket prey or (3) those from the lace monitor (Varanus varius) and the 

skink (Ctenotus leonhardii), both of which are related to the abundance of a wide range of 

arthropod species that they prey on. Similarly, BG#1 contains potential predator/prey 

relationships such as the reported high correlation between the protozoan Cercozoa and 

Ciliophora and their common prey soil bacteria. This ecological cluster also contains multiple 

fungal plant pathogens such as Truncatella, Coniothyrium and Phoma sp., with implications 

for plant communities co-existing with our belowground network. The relative abundance of 

all species and potential interactions within AG#1 and BG#1 might have been promoted by 

positive anomalies in maximum temperature (Figs. 2 and 3). Supporting this result, BG#1 

contains multiple phylotypes of bacteria that have previously been reported to respond 

positively to increases in temperature including those from the genera Candidatus, 

Koribacter, Bacillus, Burkholderia and Rhodoplanes (Oliverio et al. 2016). In other words, 

locations with the highest positive anomalies in maximum temperature might now support 

a greater abundance of species within BG#1 than locations with negative anomalies or no 

changes in maximum temperature over the past 20k years.  
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Interestingly, increases in a given ecological cluster were often followed by declines 

in the relative abundance of other ecological clusters, as supported by the multiple indirect 

effects among the relative abundance of ecological clusters in our aboveground and 

microbe-animal networks. Such results suggest that increases in the relative abundance of 

particular ecological clusters resulting from temperature legacies might have had multiple 

cascading effects on other ecological clusters. Thus, the negative relationship between 

BG/AG#1 with BG/AG#2, might also lead to cascading effects on the relative abundance of 

BG/AG#3 clusters, which were negatively related to BG/AG#2 clusters in both networks 

(Figs. 2 and 3). Thus, climatic legacies might also have multiple indirect negative or positive 

effects on the relative abundance of the ecological clusters within our two networks, as 

supported by our structural equation models (Fig. 2). Cluster BG#2 in the microbe-animal 

network, contained multiple probable mycorrhizal species such as Entoloma, Glomus and 

Claroideoglomus, which might have positive effects on plant species linked to this soil 

microbial-network; some identified using molecular techniques (Table S1). This ecological 

cluster also includes potential predator/prey relationships between soil amoeba, and 

ciliates, with bacteria and plant pathogens (e.g. Gibberella intricans).  Moreover, for the 

aboveground network, AG#2 was characterized by the potential producer/consumer link 

between emus (Dromaius novaehollandiae) and the fruits of Lycium ferocissimum, 

Eremophila debilis and Einadia spp. (Noble 1991). Our findings suggest that the relative 

abundance and potential interactions among species within all of these ecological clusters 

are highly sensitive to anomalies in maximum temperatures and their cascading effects (Fig. 

3). Changes in ecological clusters #2 in both networks, linked to climatic anomalies, might in 

turn have multiple cascading effects on the relative abundance of ecological clusters #3 in 

both networks. BG#2 is characterized by potential parasite/host interactions between 

Gregarina sp. and soil arthropods (Omoto and Cartwright 2003), predator/prey interactions 

between phylotypes from phylum Cercozoa (protist) and bacteria (Table S1) and plant-

fungal interactions of symbiosis (e.g. Auritella sp.) and pathogenesis (e.g. Devriesia sp.). 

Similarly, AG#3 is characterized by potential predator/prey interactions among plants, 

insects, lizards and amphibians.   

Although the effects of current or climatic legacies on the community assembly of 

terrestrial ecosystems are not directly comparable to those from on-going changes in 

climate, our network approach still has the potential to provide insights into the role of 
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climate change in predicting possible winner and loser community assemblies in response to 

climate change. Specifically, our study provides a compendium of species from particular 

ecological clusters that are expected to be highly sensitive to changes in climatic conditions. 

For example, current maximum temperature, one of the major climatic legacies, is also 

positively and strongly influencing the abundance of BG#1 (Fig. 2) and AG#1 (SEM direct 

effect = 1.45; P = 0.044; Table S3). This suggests that further increases in temperature 

predicted by the end of this century might continue to promote the relative abundance of 

species and interactions within this ecological cluster, largely to the detriment of those in 

BG#2 and AG# 2, with potential cascading effects on other ecological clusters. In fact, our 

findings suggest that positive anomalies of maximum temperature of up to 4°C –comparable 

to those predicted for climate change already had a massive effect on the relative 

abundance of particular ecological clusters (Fig. 3). Predicted impacts of changes in 

precipitation with climate change (Huang et al. 2016) could also be inferred from our 

network approach. For instance, for our aboveground network, current precipitation 

seasonality, whose legacy was positively related to the abundance of AG#4, indirectly via 

changes in soil pH, is still having an effect on the abundance of this ecological cluster, 

characterized for the potential interactions between the sand monitor (Varanus gouldii) and 

its prey items lycosid spiders (Lycosid spp.) and scorpions (Lychas spp.). Other examples, of 

key climatic legacies that still drive the relative abundance of particular ecological clusters 

can be inferred from Fig. 2 and Tables S1 and S3. These climatic changes could also alter the 

proportion of native species or the proportion of taxa coming from different species. For 

example, BG#1 in our microbe-animal network comprised mainly of phylotypes of strongly 

occurring bacteria and fungi, but BG# 2 also contained multiple soil animal taxa.  

 

Finally, as expected (e.g. Gossner et al. 2016), current management also influenced 

the relative abundance of ecosystem community assemblies. For example, for our 

belowground network, we found strong direct effects of cropping and cattle density on the 

relative abundance of the multiple ecological clusters within this network (Fig. 2). Of special 

interest is the negative effect of cropping on the relative abundance of BG#1 in our microbe-

animal network, which might potentially reverse part of the climatic legacies from maximum 

temperature (explained above) on this ecological cluster. Interestingly, BG#2 in the 

microbial-animal network, which was indirectly negatively affected by the maximum 
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temperature legacy, seems to benefit from cropping and cattle density impacts (Fig. 2), 

though indirectly, potentially helping to reverse climatic legacies on BG#1. All of these 

results accord with previous studies suggesting that human activities can erase part of the 

climatic legacies of temperature and precipitation on the current distribution of soil 

organisms (Delgado-Baquerizo et al. 2017). However, in general, management measured as 

cattle density did not influence the relative abundance of aboveground clusters as 

supported by our Variation Partitioning, Random Forest and Structural Equation Modeling 

analyses. The only ecological cluster affected by cattle density in this network was AG#5, 

shown in our Random Forest results (Fig. S6).  

 

Together, our work suggests that climatic legacies have left a statistically significant 

signature on the contemporary below- and above-ground community assemblies and can 

now explain a unique portion of the distribution in particular ecological clusters from 

terrestrial ecosystems. This is true even after accounting for key predictors such as location, 

soil properties, current climate or management, all of which are routinely proposed as 

drivers of ecosystem community assemblies at large spatial scales. These findings also 

advance our understanding of the links between particular climatic legacies and the relative 

abundance of species and potential interaction within ecological clusters across a broad 

range of ecosystem types at the continental scale. Moreover, we found that climatic 

anomalies might have led to multiple cascading effect on the relative abundance of 

ecological clusters in terrestrial ecosystems. We also found that current management 

influences can potentially reverse part of the impacts of climatic legacies, which occurred 

during the last 20k years, on particular ecological clusters. Such knowledge can potentially 

help us to better understand changes in particular ecosystem community assemblies in 

response to on-going global environmental change including land use intensification and 

climate change, with important implications for future sustainable management and 

conservation policies.  
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Figure captions 

Figure 1. Relative contribution of the different predictors used to model the relative 

abundance of ecological clusters within our aboveground and belowground networks. 

Upper right panels represent network diagrams with nodes coloured by each ecological 

cluster within our aboveground and microbe-animal networks. A characterization of the 

taxa within each ecological cluster is available in Table S1. Bottom left panels represent 

results from Variation Partitioning modelling aiming to identity the percentage variance of 

relative abundance of ecological clusters explained by climatic legacies, current climate and 

management. Associated P-values to the relative contribution of the different predictors are 

available in Table S3. AG = Aboveground network. BG = Belowground network. 

 

Figure 2. Mechanistic modeling identifying the direct and indirect effects of climatic legacies 

on the relative abundance of ecological clusters within our aboveground and belowground 

networks. For simplicity, only effects with a P < 0.01 are reported here. The rest of 

significant effects are available in Table S5 (0.01 < P < 0.05). Numbers adjacent to arrows 

indicate the effect-size. R2 denotes the proportion of variance explained. The size of the 

arrow is proportional to the effect size (but in the case of spatial influence). Climatic 

legacies, current climate and management predictors are included in our models as 

independent observable variables, however we grouped them in the same box in the model 

for graphical simplicity. AG = Aboveground network. BG = Belowground network. 

 

Figure 3. Selected relationships from our SEMs. Panels include relationship between 

maximum temperature legacy and ecological clusters #1 within our aboveground and 

belowground networks. Also, selected relationships between ecological clusters #1 and 2, 

and ecological clusters #2 and 3 in both independent networks. AG = Aboveground network. 

BG = Belowground network. See Fig. S10 for an alternative version of this figure using 

ecological clusters calculated after centred log-ratio transformation and showing similar 

results.  
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