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Summary

� The increase in aridity predicted with climate change will have a negative impact on the

multiple functions and services (multifunctionality) provided by dryland ecosystems world-

wide. In these ecosystems, soil communities dominated by mosses, lichens and cyanobacteria

(biocrusts) play a key role in supporting multifunctionality. However, whether biocrusts can

buffer the negative impacts of aridity on important biogeochemical processes controlling car-

bon (C), nitrogen (N), and phosphorus (P) pools and fluxes remains largely unknown.
� Here, we conducted an empirical study, using samples from three continents (North Amer-

ica, Europe and Australia), to evaluate how the increase in aridity predicted by climate change

will alter the capacity of biocrust-forming mosses to modulate multiple ecosystem processes

related to C, N and P cycles.
� Compared with soil surfaces lacking biocrusts, biocrust-forming mosses enhanced multiple

functions related to C, N and P cycling and storage in semiarid and arid, but not in humid and

dry-subhumid, environments. Most importantly, we found that the relative positive effects of

biocrust-forming mosses on multifunctionality compared with bare soil increased with increas-

ing aridity. These results were mediated by plant cover and the positive effects exerted by

biocrust-forming mosses on the abundance of soil bacteria and fungi.
� Our findings provide strong evidence that the maintenance of biocrusts is crucial to buffer

negative effects of climate change on multifunctionality in global drylands.

Introduction

Drylands are extremely important for achieving global sustain-
ability, as they constitute c. 41% of Earth’s land surface
(Reynolds et al., 2007), an area that will probably expand by the
end of this century as a result of expected increases in aridity with
climate change (Dai, 2013; Feng & Fu, 2013). Such changes in
aridity can further exacerbate soil erosion, land degradation and
desertification in global drylands (Reynolds et al., 2007; Dai,
2013; Feng & Fu, 2013), which already threaten the livelihood
of over 250 million people, mostly living in developing countries
(Reynolds et al., 2007). Soil communities dominated by mosses,
lichens and cyanobacteria (biocrusts hereafter) are common
biotic components of boreal, arctic, temperate and dryland
ecosystems worldwide (Eldridge & Greene, 1994; Belnap, 2006;
Lindo & Gonzalez, 2010; Elbert et al., 2012). These communi-
ties support a wide range of ecosystem functions, including soil
stability, carbon (C) and nitrogen (N) fixation, CO2 flux, and N

mineralization (Eldridge & Greene, 1994; Belnap, 2006; Bowker
et al., 2011; Maestre et al., 2012a). Biocrusts can also modulate
the response of C and N cycling to climate change in these areas
(Reed et al., 2012; Maestre et al., 2013; Delgado-Baquerizo et al.,
2014). Given the global distribution of biocrusts (Belnap, 2006;
Lindo & Gonzalez, 2010; Elbert et al., 2012) and their key func-
tional roles in the ecosystems where they are prevalent (Belnap,
2006; Bowker et al., 2011; Maestre et al., 2011, 2012a), under-
standing how climate change will affect the capacity of these
organisms to maintain multiple ecosystem functions simultane-
ously (i.e. multifunctionality; Maestre et al., 2012b; Bradford
et al., 2014; Byrnes et al., 2014) is critical in formulating sustain-
able natural resource management and conservation policies in
drylands worldwide.

The influence of biocrusts on multifunctionality also extends
below the soil surface through their interactions with soil
microbes. Soil microbial communities carry out almost every
planetary function and ecosystem service, including
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decomposition, nutrient cycling and climate regulation (Bodelier,
2011; Bardgett & van der Putten, 2014). Biocrusts can influence
the abundance (Bates et al., 2010; Delgado-Baquerizo et al.,
2014) and activity (Miralles et al., 2012; Castillo-Monroy et al.,
2015) of the soil microbial communities existing below them,
and recent studies suggest that these microbial communities are
highly sensitive to climate change (Garcia-Pichel et al., 2013;
Delgado-Baquerizo et al., 2014). Thus, complex interactions
between the above- (e.g. mosses, lichens) and below-ground
(microbes) biocrust communities may mediate the effects of cli-
mate change on ecosystem functioning. However, the impacts of
climate change on multifunctionality, mediated by interactions
between microorganisms (e.g. fungi and bacteria) and biocrust
constituents, are yet to be evaluated in natural environments.

Climatic controls on multifunctionality are particularly impor-
tant in drylands because their biological activity is mainly driven
by water availability (Whitford, 2002). Recent studies suggest
that the predicted increase in aridity for the late 21st century in
global drylands (Dai, 2013; Feng & Fu, 2013) will negatively
affect the cover and richness of their vascular vegetation (Maestre
et al., 2012b; Delgado-Baquerizo et al., 2013a). Interestingly, the
decline in plant cover observed with increases in aridity (Del-
gado-Baquerizo et al., 2013a) could expand the cover of biocrusts
by increasing the surface available for colonization and growth of
their constituent organisms (Belnap et al., 2001; Thomas et al.,
2011; but see Escolar et al., 2012). It has recently been suggested
that biocrusts can promote the resistance of some ecosystem func-
tions to simulated climate change (Delgado-Baquerizo et al.,
2014). Therefore, the expected increases in aridity might lead to
an increased ecosystem dependency on biocrusts to maintain dry-
land multifunctionality. However, little is known about how cli-
mate change will affect the capacity of biocrusts to maintain
multifunctionality under increasingly arid conditions, as there is
a lack of evidence from large-scale field studies on this topic.

Herein, we hypothesize that: biocrust-forming mosses promote
multiple functions related to C, N and phosphorus (P) cycle in
terrestrial ecosystems (i.e. extracellular enzyme activities (b-glu-
cosidase and phosphatase), total N, total organic C and available
P; see the rationale on the selected functions in the Materials and
Methods section); the positive effects of biocrust-forming mosses
on multifunctionality compared with bare soil will increase with
increasing aridity; and the positive effects of biocrust-forming
mosses on multifunctionality are driven via concurrent positive
effects exerted by biocrusts on the abundance of soil bacteria and
fungi. To test these hypotheses, we conducted an empirical study
using soil samples collected from three continents (North Amer-
ica, Europe and Australia) to evaluate how increasing aridity, a
common expression of climate change in drylands worldwide
(Dai, 2013; Feng & Fu, 2013), affects the capacity of biocrust-
forming mosses to alter multifunctionality. We used moss-domi-
nated biocrusts as our model system because they make up a
significant proportion of biocrusts globally (Lindo & Gonzalez,
2010; Elbert et al., 2012), are commonly found across wide envi-
ronmental gradients (e.g. from humid to arid systems; Lindo &
Gonzalez, 2010; Elbert et al., 2012), and contribute substantially
to key ecosystem functions, including primary production, soil C

fixation and N transformations in soils, infiltration and soil ero-
sion (Eldridge et al., 2010; Lindo & Gonzalez, 2010). In addi-
tion, we evaluated the role of soil microbial communities living
under biocrusts in maintaining multifunctionality along aridity
gradients.

Materials and Methods

Study sites and data collection

Field data were collected from 40 sites located in the USA, Spain
and Australia (Fig. 1; Supporting Information Table S1). Loca-
tions for this study were chosen to represent a wide aridity gradi-
ent; we included arid (n = 6 sites), semiarid (n = 25), dry-
subhumid (n = 4) and humid (n = 5) ecosystems, which are
threatened by predicted increases in aridity (Dai, 2013). The sites
surveyed encompass a wide variety of vegetation types, including
grasslands, shrublands, savannas, dry seasonal forests and open
woodlands dominated by trees. Mean annual precipitation and
temperature and soil pH of the study sites ranged from 140 to
1167 mm, from 8.1 to 19.5°C, and from 4.6 to 8.4, respectively.

Data collection was carried out between July 2012 and March
2014 according to a standardized sampling protocol (Maestre
et al., 2012b). At each site, we established a 30 m9 30 m plot
representative of the dominant vegetation. The cover of vascular
plants and plant richness at each site were measured using four
30 m transects and the line-intercept method, as described in
Maestre et al. (2012b). The coordinates of each plot were
recorded in situ with a portable global positioning system, and
were standardized to the WGS84 ellipsoid for visualization and
analyses. Aridity was determined as 1� aridity index (AI), where
AI = precipitation/potential evapotranspiration (United Nations
Environment Programme, 1992; Delgado-Baquerizo et al.,
2013a). Data of the AI were obtained from the global aridity
map of the Food and Agriculture Organization of the UN (FAO;
http://data.fao.org/map?entryId=221072ae-2090-48a1-be6f-5a8
8f061431a).

At each site, three soil cores (0–5 cm depth) were collected
under the most common biocrust-forming mosses, and in natu-
rally occurring open areas devoid of perennial vegetation and
without visible biocrust constituents. The most common mosses
in this study were Syntrichia caninervis, Syntrichia ruralis and
Bryum spp. (USA), Pleurochaete squarrosa, Tortula revolvens,
Weissia sp. and Bryum spp. (Spain) and Desmatodon convolutus,
Barbula calycina, Didymodon torquatus and Bryum spp. (Aus-
tralia). A total of 240 soil samples were collected and analyzed.
Soil sampling was always conducted during the dry season (July
2012 (before the monsoon season began) in the USA, July 2013
in Spain and March 2014 in Australia) to reduce bias among
study sites resulting from seasonal changes in the soil variables
studied. A minimum separation distance between samples, and
between these and plant patches, of 1 m was maintained to
remove potential sources of nonindependence between samples
(Delgado-Baquerizo et al., 2013b). After field sampling, the
mosses and plant roots were carefully separated from the soil,
which was sieved (2 mm mesh) and separated into two fractions.
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One soil fraction was immediately frozen at �20°C for quantify-
ing the abundance of bacteria and fungi in our samples (which
was assessed in a composite sample per plot in both biocrusts and
bare ground microsites). The other fraction was air-dried and
stored for 1 month before C, N and P analyses. Previous studies
have found that air drying and further storage of dryland soils do
not appreciably alter variables such as those we studied (Zornoza
et al., 2006, 2009). It is also important to note that the soil was
also dry (gravimetric soil moisture at 0–5 cm < 1%) when we
conducted our sampling. Thus, the potential bias induced by our
drying treatment is expected to be minimal. In addition, this
storage approach is also commonly used when analyzing soil vari-
ables such as those evaluated here in large-scale surveys (e.g.
Maestre et al., 2012b; Tedersoo et al., 2014).

Measurement of individual ecosystem functions

In all soil samples, we measured five variables that are linked to
the stocks and cycling of C, N and P: organic C, b-glucosidase,
total N, activity of phosphatase and Olsen inorganic P. Overall,
these variables (hereafter functions) constitute a good proxy of
nutrient cycling, biological productivity, and build-up of nutrient
pools (Schade & Hobbie, 2005; Perroni-Ventura et al., 2009;
Reiss et al., 2009; Jax, 2010; Maestre et al., 2012a,b; Bell et al.,
2014). In particular, organic C is considered a good proxy of
decomposition and C storage in soil (Walker & Syers, 1976;
McGill & Cole, 1981; Perroni-Ventura et al., 2009; Jax, 2010).
Extracellular enzymes activities such as phosphatase and b-glu-
cosidase are produced by soil bacteria, fungi, and archaea, and are

Fig. 1 Locations of the study sites in the USA (n = 8), Spain (n = 10) and Australia (n = 22). Color patterns indicate aridity (1� aridity index) gradients.
Aridity increases from green to purple in the graphs.
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involved in the processing, stabilization and destabilization of soil
organic matter and nutrient cycling in terrestrial ecosystems (Bell
et al., 2014). They are also considered a good indicator of nutri-
ent demand by plants and soil microorganisms (Bell et al., 2014).
In particular, phosphatase is related to the release of inorganic P
from organic matter, and b-glucosidase supports sugar degrada-
tion (Bell et al., 2014). N and P are the nutrients that most fre-
quently limit primary production in terrestrial ecosystems,
particularly in drylands (Vitousek et al., 2002; Delgado-Baquer-
izo et al., 2013a). While total N has a biological origin (e.g.
atmospheric N fixation and litter decomposition), inorganic P is
the main P source for plants and microorganisms, and its avail-
ability is linked to the desorption and dissolution of P from soil
minerals, and, to a lesser extent, the decomposition of organic
matter (Walker & Syers, 1976; McGill & Cole, 1981; Sch-
lesinger & Bernhardt, 2013).

The concentration of soil total organic C was determined by
colorimetry after oxidation with a mixture of potassium dichro-
mate and sulfuric acid as described in Anderson & Ingram (1993).
Soil total N was measured with a CN analyzer (Leco CHN628
Series; Leco Corporation, St Joseph, MI, USA). Phosphatase
activity was measured by determination of the amount of p-nitro-
phenol (PNF) released from 0.5 g soil after incubation at 37°C
for 1 h with the substrate p-nitrophenyl phosphate in MUB
buffer (Tabatabai & Bremner, 1969). The activity of b-glucosi-
dase was assayed following the procedure for phosphatase, but
using p-nitrophenyl-b-D-glucopyranoside as substrate and Tris-
hydroxymethyl aminomethane instead of NaOH when preparing
the buffer (Tabatabai, 1982). The concentration of Olsen inor-
ganic P was measured from NaHCO3 0.5M soil extracts, as
described in Tiessen & Moir (1993). In brief, soil extracts in a
ratio of 1 : 5 were shaken in a reciprocal shaker at 200 rpm for
2 h. An aliquot of the centrifuged extract was used for the colori-
metric determination of available inorganic P (PO4

�3), based on
the reaction with ammonium molybdate and development of the
‘Molybdenum Blue’ color (Bray & Kurtz, 1945).

Assessing multifunctionality

Here, we used three different approaches to assess ecosystem mul-
tifunctionality: individual functions assessed separately (organic
C, total N, activity of b-glucosidase and phosphatase and Olsen
P); the average approach (Maestre et al., 2012b); and the multi-
ple-threshold method (Maestre et al., 2012b; Bradford et al.,
2014; Wagg et al., 2014; Lundholm, 2015). Average multifunc-
tionality calculates the average of the previously standardized
multiple functions measured (Maestre et al., 2012b). This
approach is increasingly being used (Maestre et al., 2012b; Brad-
ford et al., 2014; Wagg et al., 2014; Lundholm, 2015), and pro-
vides a straightforward and easily interpretable measure of
multifunctionality (Byrnes et al., 2014). To obtain our average
multifunctionality index (hereafter, multifunctionality) for each
microsite (biocrust and bare ground) and site, we first standard-
ized each of our five variables to a 0–1 scale by dividing each
value by the maximum value for that particular variable. Raw
data were log10-transformed as needed to improve normality

before these calculations. Following this, the standardized vari-
ables were averaged to obtain our multifunctionality index. This
index was strongly related to the same index calculated with other
popular standardization approaches such as the z-standardization
(Fig. S1). For simplicity and practicality (i.e. averaging multi-
functionality index allows further numerical analyses), we used
this multifunctionality index in our manuscript. However, the
averaging approach cannot distinguish between: two functions
having similar values; and one function having high values com-
pensating for a second function with low values (Byrnes et al.,
2014). To account for this issue, we also estimated multifunc-
tionality using the multiple-threshold method of Byrnes et al.
(2014), which evaluates the number of functions that simultane-
ously exceed multiple critical thresholds. The multiple-threshold
approach of multifunctionality, which was originally developed
by Byrnes et al. (2014), captures the number of functions that
perform the best. In brief, this approach calculates the maximum
value of each measured function and counts the number of func-
tions that exceed a pre-established threshold. For our analyses, we
used thresholds from 5 to 100% (Bradford et al., 2014). This
method provides information about the threshold in which our
variable maximizes the effect on the number of functions beyond
that threshold. If this threshold is low, it means that the effect of
our variable is constrained or is more important for low func-
tional ecosystems, whereas if it peaks in high thresholds, the effect
of our variable is more important for high functional ecosystems.
These analyses were conducted using MATLAB v.7.0 (MathWorks
Inc., Natick, MA, USA).

Assessment of microbial abundance

We measured the abundance of total fungi and bacteria for
biocrusts and bare ground using quantitative PCR (qPCR). Soil
DNA was extracted from 0.5 g of defrosted soil samples using the
Powersoil DNA Isolation Kit (Mo Bio Laboratories, Carlsbad,
CA, USA) according to the instructions provided by the manu-
facturer. We quantified the total amount of bacteria and fungi
using qPCR; each sample was run in triplicate using 96-well
plates on a CFX96 Touch Real-Time PCR Detection System
(Foster City, CA, USA). Total bacterial 16S and fungal ITS genes
were amplified with the Eub 338-Eub 518 (Lane, 1991) and
ITS1-5.8S (Vilgalys & Hester, 1990) primer sets, respectively, as
described in Delgado-Baquerizo et al. (2014). Efficiencies for all
quantification reactions were > 90%, with R2-values ranging
from 0.90 to 0.99. The abundances of fungi and bacteria were
expressed as the number of DNA copies g–1 of dry soil. To obtain
these units, we first calculated the number of DNA copies ng–1 of
DNA in our PCR reaction. Then, we obtained the number of
DNA copies in our whole DNA extraction (100 ll). Finally, we
obtained the number of DNA copies g–1 of dry soil.

Evaluating the effects of biocrusts on individual functions,
multifunctionality and microbial abundance

To evaluate how the effects of biocrusts on multifunctionality
change with aridity, we first calculated the RII index for each
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microsite and site as (Mbio�Mbg)/(Mbio +Mbg), where Mbio and
Mbg are the average values of multifunctionality under the
biocrusts and in bare ground for a given site, respectively (Armas
et al., 2004). The RII index has previously been used to explore
biocrust effects on soil fertility (e.g. Concostrina-Zubiri et al.,
2013; Delgado-Baquerizo et al., 2015). Here, we changed the
concept of fertility for one of multifunctionality and applied this
approach to our dataset. Values of this index ranged from �1 to
+1, with positive values indicating increases in multifunctionality
under the canopy of biocrusts compared with bare ground, and
negative values the opposite. Similarly, we calculated the RII
index for each of the soil functions used in the multifunctionality
index and for both bacterial and fungal abundance.

Statistical analyses

We examined the effects of biocrusts on multifunctionality and
on each individual function evaluated by conducting a nested
ANOVA, with microsite (biocrust-forming mosses and bare
ground) as a fixed factor and site as a random factor nested within
microsite (Quinn & Keough, 2002). These analyses were con-
ducted independently for the arid, semiarid, dry-subhumid and
humid sites sampled. Because we only measured microbial abun-
dance in a composite sample per site, we evaluated differences in
microsite on bacterial and fungal abundances by conducting a
one-way ANOVA, with microsite as a fixed factor. Before these
analyses, total organic C, total N, Olsen P, activity of b-glucosi-
dase and phosphatase, and total fungi and bacteria were log-
transformed to improve normality.

To assess how the effects of biocrusts on multifunctionality
change along aridity gradients, we fit linear regressions between
aridity (1� AI) and the RII values obtained with multifunction-
ality data. Similar regressions were carried out for the RII values
of bacterial and fungal abundance, and for those soil variables
used to calculate the multifunctionality index. In addition, it
could be argued that our data may suffer from spatial influence
(samples collected within three continents). To address this issue,
we conducted partial correlations between aridity and RII multi-
functionality, controlling for latitude and longitude.

Finally, we used structural equation modelling (SEM) to
identify the mechanisms that control for the effects of biocrusts
on multifunctionality (RII multifunctionality) across our aridity
gradient; these is the indirect impacts from aridity on RII multi-
functionality via soil pH, plant features (cover and richness) and
the effects of biocrusts on the abundance of fungi and bacteria
(RII bacterial and fungal abundance, respectively). SEM is par-
ticularly useful in large-scale correlative studies (Grace, 2006)
because it allows us to partition causal influences among multi-
ple variables, and to separate the direct and indirect effects of
the predictors included in the model. We established an a priori
model based on our current knowledge (Fig. S2). Some data
manipulation was required before modeling. We examined the
distributions of all our endogenous variables, and tested their
normality. Aridity was x2-transformed to improve normality. In
addition, to reduce the number of variables, and because RII
bacterial and fungal abundance were highly correlated (Pearson’s

r = 0.63; P < 0.001), we reduced these two variables to a single
variable using a principal component analysis (PCA) based on a
correlation matrix. We then introduced the first component of
this PCA as a new variable into the model (RII microbial abun-
dance). RII microbial abundance was highly correlated to both
RII bacterial and RII fungal abundance (Pearson’s r = 0.91;
P < 0.001 in both cases). After these transformations, all the
variables were normally distributed. With a good model fit (see
below in this paragraph), we were free to interpret the path coef-
ficients of the model and their associated P-values. A path coeffi-
cient is analogous to the partial correlation coefficient, and
describes the strength and sign of the relationships between two
variables (Grace, 2006). We then parameterized our model
using our dataset and tested its overall goodness of fit. There is
no single universally accepted test of overall goodness of fit for
SEM, applicable in all situations regardless of sample size or
data distribution. Here we used the chi-squared test (v2; the
model has a good fit when v2 is low (c. ≤ 2) and P is high (tradi-
tionally > 0.05); Schermelleh-Engel et al., 2003) and the root-
mean-square error of approximation (RMSEA; the model has a
good fit when RMSEA is low (c. ≤ 0.05) and P is high (tradi-
tionally > 0.05); Schermelleh-Engel et al., 2003). All the SEM
analyses were conducted using AMOS 20.0 (IBM, SPSS,
New York, USA).

Results

Plant cover and species richness declined with increasing aridity
(Fig. S3; P < 0.05). In addition, for the Australian sites, the cover
of biocrust-forming mosses was positively related to aridity
(Fig. S3; P < 0.001). Our results indicate that soils beneath
biocrust-forming mosses had higher soil multifunctionality than
those found in bare soil in arid and semiarid ecosystems, but not
in dry-subhumid and humid ecosystems (Fig. 2a,b). These results
were robust to the choice of approaches used to estimate multi-
functionality (Figs S4, S5). Thus, we report in the text, and use
in further analyses (described later), only results from the averag-
ing method.

Our results further indicate that the positive relative effects of
biocrusts on multifunctionality, as measured with the RII index,
increased with aridity (Fig. 2c; P < 0.001). The partial correlation
results indicated that the positive relationship between aridity and
RII multifunctionality is maintained when the effects of spatial
influence (latitude and longitude) were controlled for (Pearson’s
r = 0.370; P = 0.011). In addition, we found that the effect of
biocrusts on multifunctionality was positively related to the cover
of biocrust-forming mosses at the Australian sites, which account
for the full range of aridity conditions evaluated (Fig. S6).

Similarly, soils under biocrust-forming mosses promoted
higher soil organic C, b-glucosidase and phosphatase activities
than those located in bare ground in the most arid places (Fig. 3).
This was particularly evident for organic C and enzyme activities
compared with P availability (Fig. 3). As with RII multifunction-
ality, our results indicate that the positive relative effects of
biocrusts on soil organic C, total N, b-glucosidase and phos-
phatase activities and Olsen P were augmented with aridity
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(Fig. 4; P ≤ 0.05). This effect was especially important for extra-
cellular enzyme activities (Fig. 4; R2 > 0.40; P ≤ 0.001).

Soils under biocrust-forming mosses showed a higher
microbial abundance (Fig. 5a,b) than those from bare ground,
especially in the most arid places (Fig. 5c,d; P ≤ 0.001). Fur-
ther, the positive relative effects of biocrusts on microbial
abundance (RII fungal and bacterial abundance as measured
with qPCR) were positively related to those on multifunction-
ality (Fig. 5e,f; P < 0.001). Biocrust-forming mosses showed
the highest positive effect on fungal compared with bacterial
abundance (Fig. 5), but both RII bacterial and fungal abun-
dance showed similar positive effects on RII multifunctionality
(Fig. 5e,f).

Finally, our SEM explained 50% of the variance found in
the RII multifunctionality (Fig. 6a). Our a priori SEM model
was satisfactorily fitted to our data, as suggested by the v2 test
(v2 = 0.00; P = 0.99; df = 1) and RMSEA (RMSEA = 0.00;
P = 0.99) values. Our SEM model revealed indirect positive
effects of aridity on RII multifunctionality via plant cover (�),
plant richness (�), soil pH (+) and RII microbial abundance
(+), but we did not find any significant direct effect of aridity
on RII multifunctionality (Fig. 6a). Plant cover and soil pH
had a positive direct effect on RII microbial abundance. Alto-
gether, aridity showed the highest total standardized effect
(sum of all indirect and/or direct effects) on RII multifunc-
tionality followed by RII microbial abundance and plant cover
(Fig. 6b).

Discussion

Our results provide strong evidence that biocrust-forming mosses
promote multifunctionality compared with bare ground areas in
arid and semiarid ecosystems, but not in dry-subhumid and
humid areas. Most importantly, the positive relative effects of
biocrusts on multifunctionality, as measured with the RII index,
increased with aridity. We also found that the positive effect of
biocrusts on multifunctionality increased with the cover
of mosses at the Australian sites, which spanned the full range of
aridity conditions evaluated. These observations are supported by
previous reports of positive effects on biocrusts on selected soil
variables (Bowker et al., 2011; Maestre et al., 2012a; Con-
costrina-Zubiri et al., 2013; Delgado-Baquerizo et al., 2014,
2015). In addition, these results are consistent with a large body
of the literature suggesting that biotic components (e.g. plant
cover) often promote fertility islands in dryland ecosystems
(Tongway et al., 1989; Bolling & Walker, 2002; Schade & Hob-
bie, 2005; Perroni-Ventura et al., 2009).

Our results further indicate that the positive relative effects
of biocrusts on multifunctionality strengthen with increases in
both aridity and biocrust cover. A major implication of our
study is that biocrusts can be critical for maintaining multi-
functionality under predicted increases in aridity in drylands
worldwide. Consequently, any loss of biocrust cover resulting
from changes in land use (e.g. soil disturbance from grazing;
Eldridge et al., 2010) may result in losses of soil C and nutri-
ent availability (e.g. via erosion) affecting important ecosystem

(a)

(b)

(c)

Fig. 2 (a) Multifunctionality values (means� SE) for the different biomes
and microsites included in this study: humid (n = 5), dry-subhumid (n = 4),
semiarid (n = 25) and arid (n = 6). Differences between biocrust and bare
ground for each biome are as follows: °, P = 0.09; *, P = 0.01. (b)
Relationship between aridity and the multifunctionality index used in this
study for the soils under biocrusts and bare ground areas. The solid and
dashed lines represent the fitted quadratic regressions for biocrusts and
bare ground samples, respectively. Open triangles, bare ground; green
squares, biocrusts. (c) Relationship between aridity and RII
multifunctionality (i.e. relativized difference between biocrust and bare
ground). The solid line represents the fitted linear regression.
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services such as C storage, climate regulation and plant pro-
ductivity at the global scale (Lal, 2004). The effects of
biocrusts will be particularly important in the most arid

environments as a result of their naturally low microbial activ-
ity and nutrient availability (Maestre et al., 2012b; Delgado-
Baquerizo et al., 2013a,b).

(a)

(b) (c)

(d) (e)

Fig. 3 Values of the different functions measured in the different biomes and microsites studied: (a) organic carbon (C); (b) activity of b-glucosidase; (c)
total nitrogen (N); (d) activity of phosphatase; and (e) Olsen phosphorus (P). Data are means� SE; n is as follows: humid (n = 5), dry-subhumid (n = 4),
semiarid (n = 25) and arid (n = 6). Differences between biocrust and bare ground for each biome are as follows: °, P ≤ 0.10; *, P < 0.05.
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Although the effects of biocrust-forming mosses showed sim-
ilar positive trends for each of the single functions studied
(Figs 3, 4), of special interest was the fact that these organisms
had the least influence on the availability of soil P compared
with other variables related to soil organic matter such as
organic C, total N (i.e. RII total N) and enzyme activities.
This interesting result may be linked to the different degrees
in which organic matter and P are related to biological and

geochemical processes in drylands (Walker & Syers, 1976;
McGill & Cole, 1981; Cross & Schlesinger, 2001; Delgado-
Baquerizo et al., 2013a). It is well known that the availability
of organic matter (i.e. C and N) is primarily linked to biologi-
cal processes (e.g. photosynthesis, mineralization and atmo-
spheric N fixation), and thus can be largely influenced by
biocrusts (Evans & Ehleringer, 1993; Belnap, 2003; Castillo-
Monroy et al., 2010). For example, Castillo-Monroy et al.

(a)

(b) (c)

(d) (e)

Fig. 4 Relationship between aridity and the effect of biocrust-forming mosses (RII index, i.e. relativized difference between biocrust and bare ground) on
the different soil variables used in this study. The solid lines represent the fitted linear or quadratic regressions.
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(2010) and Evans & Ehleringer (1993) reported that biocrusts
are an important source of C and N in drylands. However,
the availability of P in drylands is linked to the dissolution of

P from soil minerals and, to a lesser extent, to organic matter
decomposition (Walker & Syers, 1976; McGill & Cole, 1981;
Delgado-Baquerizo et al., 2013a). The lower extent to which P

(a) (b)

(c) (d)

(e) (f)

Fig. 5 Abundance of bacteria (a) and fungi (b) in the different biomes and microsites studied. Data are means� SE; n is as follows: humid (n = 5), dry-
subhumid (n = 4), semiarid (n = 25) and arid (n = 6). Differences between biocrust and bare ground for each biome are as follows: °, P < 0.10; *, P < 0.05.
(c, d) The relationship between aridity and the effect of biocrust-forming mosses on the abundance of bacteria (c) and fungi (RII bacteria/fungi abundance)
(d). (e, f) The relationship between RII bacteria/fungi abundance and the effects of biocrusts on multifunctionality (RII multifunctionality). The solid lines
represent the fitted linear regressions.
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is linked to biological process in drylands may explain why
biocrusts exert the weakest observed influence on this particular
variable. However, although biocrusts had less influence on
available P than on those variables related to organic matter,
we still found a positive effect of biocrust-forming mosses on
RII P availability. This result suggests that biocrust-forming
mosses can still have some control on the P availability of dry-
lands, which is probably derived from their positive effects on
extracellular enzymes related to the P cycle observed here (e.g.
phosphatase; qRII P availability = 0.44; P = 0.004) and by others
(Bowker et al., 2011; Maestre et al., 2012b).

Soils under biocrust-forming mosses had greater microbial
abundance (Fig. 5a,b) than those from bare soils, particularly in
the most arid places (Figs 4, 5c). Positive effects of biocrusts on
the abundance of soil fungi and bacteria have been observed
previously (Bates et al., 2010; Delgado-Baquerizo et al., 2014).
Our results suggest that the effect of biocrusts on microbial
abundance increases with aridity (Figs 5c,d, 6a), a response that
has not been reported before. We found a positive relationship
between the RII values for multifunctionality and for microbial
abundance (Fig. 5e,f). Thus, biocrust-induced changes in the
abundance of fungi and bacteria may trigger the observed
effects of biocrusts on multifunctionality along aridity gradients
(Figs 5e,f, 6). Biocrusts probably provide better habitats for
microbial communities than bare ground areas, particularly in
the most arid environments where they are likely to buffer
extremes of temperature and water availability (Bates et al.,
2010; Delgado-Baquerizo et al., 2014). Compared with these
areas, biocrusts therefore support the highest relative multifunc-
tionality in these environments (Bodelier, 2011; Bardgett &
van der Putten, 2014).

Although we found that aridity and RII microbial abundance
were highly related to RII multifunctionality, these results are
correlative in nature, and hence potentially noncausal. To
address this issue, we conducted SEM analyses to identify the
relative importance and indirect effects of aridity on RII multi-
functionality via soil pH, plant features (cover and richness) and
RII microbial abundance (first axis of a PCA with RII bacterial
and fungal abundance). Our model indicates that aridity is driv-
ing RII multifunctionality via plant cover, plant richness, soil
pH and RII microbial abundance, confirming the important
role of microbial abundance on ecosystem multifunctionality
discussed earlier (Fig. 6b). These results are not surprising, as
factors such as plant influence and soil pH are largely known to
be positively related to the soil microbial community (Prober
et al., 2015). Indeed, we identified plant cover as the largest
driver of the effects of biocrusts on multifunctionality in
response to increasing aridity. As aridity increases, plant cover is
reduced, thereby diminishing its influence on ecosystem multi-
functionality in the surrounding bare areas (Maestre et al.,
2003, Maestre et al., 2012b; Eldridge et al., 2010; Delgado-Ba-
querizo et al., 2013a). Furthermore, as observed here and by
others (Belnap et al., 2001; Buis et al., 2009; Thomas et al.,
2011), increasing aridity (Fig. S3) and decreasing plant cover
promote the coverage of biocrust-forming mosses (for Australia,
qplant cover � biocrust cover =�0.90; P < 0.001). Discrete plant
patches influence the nutrient content of surrounding open
areas in drylands (Maestre et al., 2009), the cover of plants is
reduced with aridity, and the relative importance of biocrusts to
ecosystem multifunctionality increases compared with bare
ground areas, reducing the negative impacts of aridity on multi-
functionality in the most arid places. Thus, by controlling both

(a)
(b)

Fig. 6 (a) Structural equation model assessing the indirect and direct effects of multiple drivers of the effect of biocrusts on soil microbes and
multifunctionality (RII microbes and RII multifunctionality), respectively. Numbers adjacent to arrows are indicative of the effect size of the relationship.
Continuous and dashed arrows indicate positive and negative relationships, respectively. Significance levels are as follows: °, P < 0.10; *, P < 0.05;
**, P < 0.01. (b) Total effects of the different drivers of RII multifunctionality and RII microbes.
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the biocrust cover and the soil functionality of surrounding
areas, plant cover can drive the relative effects of biocrusts on
multifunctionality (RII multifunctionality).

Consistent with our results for plant cover, plant richness was
negatively related to the effect of biocrusts on multifunctionality
(Fig. 6b). Plant richness has been reported to promote positive
effects on ecosystem multifunctionality in global drylands
(Maestre et al., 2012b). In this respect, landscapes with high plant
richness are expected to promote multifunctionality of surround-
ing open areas between plant canopies (Maestre et al., 2012b),
masking the positive effects of biocrusts on multifunctionality.
Plant richness is often reported to decline with aridity in drylands
(e.g. this study; Maestre et al., 2012b). In this respect, the
biocrust effects on ecosystem multifunctionality will be particu-
larly important in the most arid environments where the positive
effects on multifunctionality of other biotic attributes, such as the
cover and richness of vascular plants, will probably be reduced
with climate change (Fig. S3b,c; Maestre et al., 2012b; Delgado-
Baquerizo et al., 2013a).

Conclusions

Our study provides novel, empirical evidence that the effects of
moss-dominated biocrusts on multifunctionality become more
positive with increases in aridity, such as those expected with cli-
mate change in drylands worldwide. This was particularly evident
for organic C and enzyme activities compared with P availability.
We also found that the positive effects of biocrust-forming
mosses on multifunctionality are mediated by the positive effects
exerted by these organisms on the abundance of soil bacteria and
fungi. Our findings identify the need to maintain and preserve
biocrusts to mitigate the negative impacts of climate change on
multifunctionality in drylands worldwide.
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