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Abstract
Aims Biocrusts are globally distributed and important
for sustaining critical ecosystem functions. Little is
known about their continental drivers and how
smaller-scale microsite differences might affect
biocrusts along aridity gradients. This limits our ability
to manage biocrusts effectively under drier climates.
Methods We collected data on biocrust cover, biotic
(plants, litter, grazing intensity) and abiotic (soil texture,
soil stability and integrity) attributes from four
microsites (trees, shrubs, grasses, open) at 150 sites
along an extensive aridity gradient in eastern Australia.
Results At the sub-continental scale, average biocrust
cover increased with declining litter cover, and crust
cover became more variable with increasing aridity.
Biocrust cover was greatest in open microsites and least
under trees, and differences were related to the effects of
soil texture, vegetation and grazing intensity, which
either increased or declined with increasing aridity.

Conclusions Our study reveals that biotic and abiotic
effects on biocrust cover vary at different spatial scales
along an aridity gradient. Predicted increases in aridity
in eastern Australia will likely enhance biocrust cover
whereas microsite-level effects are likely to be driven by
land management actions such as vegetation removal
and overgrazing.

Keywords Biological soil crust . Climatic gradient . Soil
surface condition . Grazing . Vascular plants . Spatial
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Introduction

Soil surfaces, stabilized by vascular plants and biocrusts,
are extremely important for supporting terrestrial pro-
ductivity and for global sustainability, but are threatened
by climate change, resulting in soil erosion, land degra-
dation and desertification under increasing aridity (Dai
2013; Garcia-Pichel et al. 2013). Biocrusts dominated
by lichens, bryophytes, and minute organisms such as
cyanobacteria, bacteria and fungi are common biotic
component that are found on the surface of the soil
across terrestrial biomes (Belnap 2003; Delgado-
Baquerizo et al. 2016; Eldridge and Greene 1994). In
drylands, they account for almost 70% of the biotic
cover (Rutherford et al. 2017; Ferrenberg et al. 2017).
Biocrust communities support numerous ecosystem
functions, mitigate the impact of increasing dryness on
ecosystem processes, and protect soils from degradation
(Concostrina-Zubiri et al. 2017; Delgado-Baquerizo
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et al. 2016). Over the past decade, biocrust research has
tended to focus on their effects on ecosystem functions,
the impacts of land use intensification such as grazing
and vegetation removal, and their roles in soil restora-
tion (Daryanto et al. 2013; Delgado-Baquerizo et al.
2016; Zaady et al. 2013). While a great deal is known
about the global distribution of biocrust cover
(Rodriguez-Caballero et al. 2018), we know less about
the continental drivers of biocrust cover, and how
smaller-scale microsite effects (e.g. different
m i c r o c l ima t e c au s ed by vege t a t i on t ype ,
microtopography; Bowker et al. 2006) might vary
across larger gradients. This knowledge is important,
because land use changes that involve soil disturbance
and vegetation removal have the capacity to reduce
suitable biocrust habitat, with potential impacts on soil
functions such as hydrology, nitrogen fixation, surface
integrity and the provision of habitat for microbes
(Darby and Neher 2016; Eldridge and Greene 1994;
Ferrenberg et al. 2006).

Studies of the biogeography of biocrusts suggest that
continental shifts in temperature, and the amount and
seasonality of precipitation, influence biocrust cover
and composition, but most studies have been restricted
to regional environmental gradients (Eldridge and
Delgado-Baquerizo 2019; Garcia-Pichel et al. 2013;
Reed et al. 2012). These relationships are thought to
be due to physiological mechanisms or functional traits
of the component organisms. For example, rainfall sea-
sonality and the length of dry periods are known to limit
the distribution of the soil lichen Chondropsis
semiviridis in south-eastern Australia by restricting its
photosynthetic capacity (Rogers 1971). Aridity can also
affect biocrust cover, growth form and reproduction
traits, and change the photobiont associated with lichens
in the crust (Matos et al. 2015). Climate could also
indirectly affect biocrusts across large environmental
gradients, by changing how they interact with vascular
plants. Thus, as environments become more arid, re-
duced resource competition from vascular plants, higher
light availability, and lower levels of litter cover would
favor biocrusts (Garcia-Pichel et al. 2013; Muñoz-
Martín et al. 2019; O’Bryan et al. 2009). Differences
in soil properties such as substrate type, clay content or
soil moisture can also drive large-scale changes in
biocrust cover (Büdel et al. 2009; Concostrina-Zubiri
et al. 2014; Grishkan et al. 2006). Many of these studies,
however, have focused on relatively short gradients in
biotic and abiotic factors (e.g. soil properties,

disturbance level, vascular plants), so it remains unclear
how changes along continental or extensive sub-
continental gradients might affect biocrust cover.

Vascular plant cover is known to decline in re-
sponse to continental shifts in climate (e.g. aridity),
so that the distribution of biocrusts is likely compli-
cated by smaller-scale microsite effects driven by
changes in vascular plant cover (Bowker et al.
2016). Plants are known to suppress the develop-
ment of biocrusts in more mesic areas, but an in-
creasing body of evidence suggests that they may
have strong facilitatory effects on biocrusts in drier
environments (Concostrina-Zubiri et al. 2014;
Maestre et al. 2009). Perennial plants can buffer
environment stresses by reducing fluctuations in
temperature and soil moisture, capturing resources,
such as aeolian dust, or preventing the ingress of
herbivores that trample biocrusts (Eldridge et al.
2006; Maestre 2003; Ochoa-Hueso et al. 2018;
Soliveres and Eldridge 2020). Any effects of vege-
tation might be expected to vary with microsites, but
there is little information on such effects. Exploring
how small-scale effects of different microsites might
change along extensive environmental gradients
would help us to improve our prediction of how
the distribution of biocrusts might change under
predicted drier climates, and identify those
microsites that might act as biocrust refugia under
warmer or drier climates.

Here we describe a study where we explored the
continental drivers and changes in biocrust cover in four
markedly different microsites (beneath trees, shrubs and
grasses, and in open interspaces) along an aridity gradi-
ent in eastern Australia that extended frommesic coastal
forests to arid open woodlands. We used a combination
of regression analyses and structural equation modelling
to address two predictions. First, we expected that
biocrust cover would increase with increasing aridity
across the sub-continental gradient, corresponding to
declines in vascular plant cover and therefore reductions
in resource competition, and with increasing cover of
bare soil that provides suitable habitat for biocrusts
(Delgado-Baquerizo et al. 2013; Maestre et al. 2010).
Second, we predicted that the magnitude of biocrust
cover would differ among the four microsites due to
marked differences in biotic (litter cover, plant cover)
and abiotic (soil texture, soil stability, disturbance inten-
sity) conditions among microsites (Bowker et al. 2016;
Vandandorj et al. 2017).
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Methods

Study area

Our study was conducted along an extensive aridity
gradient in eastern Australia, extending 1500 km from
the east coast to the dry interior (29.0°S – 35.1°S,
140.7°E – 151.4°E; Fig. 1). The gradient covered hu-
mid, dry sub-humid, semiarid and arid zones. Average
annual rainfall varied from 1299 mm on the coast to
184 mm in the interior. Rainfall seasonality varied from
summer dominant in the north-east, to uniform in the
centre, predominantly winter dominant in the south-
west, and low rainfall in the north-west (Bureau of

Meteorology 2019). The average annual temperature
varied from 13 °C – 21 °C, with diurnal temperatures
typically hot in summer (>30 °C) and mild in winter
(>10 °C) (Bureau of Meteorology 2019). Soils across
the survey area ranged from heavy clays to clayey sands,
with soil pH generally increasing, but total soil carbon
and nitrogen declining, with increasing aridity. Vegeta-
tion communities across the gradient were highly vari-
able, ranging from coastal forest to semiarid woodlands
to arid shrublands dominated by Eucalyptus spp.,
Callitris spp., Acacia aneura, accompanied by grasses
(e.g., Lomandra spp., Aristida spp., Austrostipa spp.,
Enteropogon spp.) and shrubs (e.g. Persoonia spp.,
Leptospermum spp., Acacia spp., Dodonaea spp.,

Fig. 1 (a) Location of the 150 sample sites in relation to aridity,
and images of (b) tree, (c) shrub, (d) grass, (e) open microsite; (f)
box plots and scatter points for biocrust cover in the four
microsites; the inside horizonal line represents the median value
and the vertical line outside the box indicates the variability
outside the upper and lower quartiles (box edges); different letters

indicate a significant difference at P < 0.05; (g) heterogeneity of
biocrust cover along the aridity gradient. NSW, New South Wales,
Australia; CV%, coefficient of variation; blue solid line is loess
regression fit curve and the blue vertical broken lines are the
boundaries of climatic zones (HU - humid zone; DS - dry subhu-
mid zone; SA - semiarid zone; AR - arid zone)
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Eremophila spp.) with vascular plant density and rich-
ness declined with increasing aridity (Table S1 in
Appendix S1). Biocrusts ranged from moss-dominated
mats (e.g. Campylopus spp., Funaria spp.) in mesic
areas, to lichen-dominated biocrusts in dry subhumid
and semi-ar id environments (Diploschis tes
thunbergianus, Placidium spp., Endocarpum spp.,
Psora decipiens, Xanthoparmelia spp.). In arid areas,
biocrusts were dominated by a sparse cover of
cyanolichens (Peltula spp., Collema spp.) and
cyanobacteria (Eldridge and Tozer 1997).

Field survey

We sampled across the four aridity zones (Aridity ranges
from −0.2 to 0.9), with generally more sites sampled in
the semiarid area due to its larger spatial proportion (Fig.
1). Aridity was determined as 1 - Aridity Index (AI),
where AI = precipitation/potential evapotranspiration
(United Nations Environment Programme 1992). Data
on the AI were obtained from Consortium for Spatial
Information (CGIAR-CSI) for the 1950–2000 period
(Zomer et a l . 2008) (h t tp : / /www.cgiar-cs i .
org/data/global-aridity-and-pet-database). Along the
aridity gradient, 150 sites were totally sampled in the
humid (n = 30 sites), dry sub-humid (n = 30 sites), semi-
arid (n = 60 sites), and arid (n = 30 sites) areas. To con-
trol for the confounding effects of climate variability
(i.e., rainfall variability, temperature variability) and
overgrazing along the aridity gradient, we sampled sites
in areas with a low rainfall and temperature variability
(coefficient variation, CV < 30%), and focused our site
selection on conservation areas (i.e., national parks, state
forests, traveling stock reserves) where the vegetation
communities are subjected to low levels of grazing
intensity. To avoid the effect of other disturbances (e.g.
, wildfires, vehicle tracks) on biocrust cover, we sur-
veyed in natural areas that naturally had been unburned
in the past 30 years and were away from major tracks.

Data were collected between February 2018 and Au-
gust 2019. At each site, geography information was re-
corded using a Garmin Montana 680 T (Garmin Corp.,

Olathe, KS, USA), and the condition of the soil
surface assessed beneath trees, shrubs, grasses and in
the open using small circular quadrat (64 cm diameter).
Quadrats were placed under the dominant plant species
found at each site. For trees, eucalypts were chosen
across the whole gradient, but shrub species varied from
Acacia and Banksia species in mesic areas, to

Eremophila and Dodonaea in arid environments. Be-
cause there was no single grass species that spanned the
entire gradient, we sampled under different species
across the gradient. Soil surface condition was assessed
by recording the status of soil surface attributes
(Tongway 1994). This procedure has been used exten-
sively across a range of environments to identify how
well surface soils function in terms of nutrient cycling
(Eldridge et al. 2019), water flow and soil stability
(Eldridge et al. 2017). In each quadrat, we assessed nine
attributes: (1) the total cover of biocrusts, including
cyanobacteria, fungi, lichens, and mosses, (2) soil sta-
bility (the stability of surface soil aggregates assessed
using the Slake Test, Emerson 1967; 0 = not applicable,
1 = very unstable, 2 = unstable, 3 = moderately stable,
4 = very stable), (3) soil integrity (the cover of eroded
soil surface; 1 = > 50%, 2 = 20–50%, 3 = 10–25%, 4 = <
10%), (4) plant cover (projected foliage cover of
groundstorey perennial and annual plants in the quadrat;
0–100%), (5) plant richness (total number of vascular
plants), (6) litter cover (0–100%), (7) litter depth (mm),
(8) soil sand content based on categorical values of soil
texture, with higher value indicating greater sand con-
tent (1 = silty to heavy clay, 2 = sandy clay loam to
sandy clay, 3 = sandy to silty loam, 4 = sand to clayey
sand). We also counted the dung of all herbivores within
the quadrats to obtain a measure of (9) recent grazing
intensity. We removed litter from the soil surface to
assess groundstorey plants and biocrusts after measur-
ing litter attributes. To estimate the grazing intensity, we
used the relationship between dung counts and the dry
mass of dung of each herbivore (Eldridge et al. 2017) to
calculate the dry mass of herbivores per hectare, and
classified it into three categories: (1) ungrazed (no
dung), (2) low grazing (dung dry mass < 15 kg ha−1),
(3) moderate grazing (dung dry mass > 15 kg ha−1).
Kangaroos (74%) and to a lesser extent, feral goats
(18%) were the two main herbivores at our sites. Kan-
garoos exert a lower pressure on the soil surface than
livestock (Bennett 1999). We sampled two replicates of
each microsite and averaged the values of each attribute.

Statistical analysis

We used statistical tests and regression analyses to ex-
plore the variability of biocrust cover at the site scale
and along environmental gradient. First, we used linear
models to test for potential differences among the four
microsites (tree, shrub, grass and open) then used the
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post-hoc Fisher’s Least Significant Difference (LSD)
test to examine where differences occurred and where
a significant microsite effect was detected. We then
calculated the variability in biocrust cover (% coefficient
variation, CV) among the four microsites at each site
and used a loess regression to detect the pattern of
variability along the aridity gradient. We used piecewise
linear regression to explore the magnitude of change in
biocrust cover along continuous gradients in aridity,
plant cover and litter cover. Quantile regression (95th
and 5th percentile) was used to fit the boundaries of
biocrust cover along these continuous gradients. Both
piecewise regression and quantile regression are widely
used in ecology to illustrate changes in linear relation-
ships and quantify the boundaries of scatter points
against environment gradients (Scharf et al. 1998). Lin-
ear regressionmodels were then used to explore changes
in biocrust cover with categorical levels of soil sand
content. Analyses were performed using ‘quantreg’,
‘tidyr’ and ‘ggplot2’ packages in R 3.4.1 version (R
Core Team 2018).

We used Structural EquationModelling (SEM; Grace
2006) to explore the direct and indirect effects of biotic
(i.e. litter cover and depth, plant cover and plant rich-
ness) and abiotic attributes (i.e. aridity, soil sand content,
soil stability, soil integrity and grazing intensity) on
biocrust cover in tree, shrub, grass and open microsites.
We developed an a priori model of how we expected
these biotic and abiotic factors to influence biocrust
cover (Fig. S1 in Appendix S2). Among factors includ-
ed in the model, aridity was used to represent the impact
of climate, and soil sand content (sand) used to indicate
the impact of soil texture. We used litter cover, litter
depth, soil stability and soil integrity as measures of soil
surface condition. Plant cover and plant richness were
used to illustrate the effect of vascular plants and we
used grazing intensity to explore the impact of recent
grazing on biocrust cover. In this a priori model, we
predicted that aridity would have a direct effect on
biocrust cover, as well as indirect effects mediated by
soil sand content, grazing intensity, plants or soil surface
conditions. We expected that grazing and soil sand
content would either directly affect biocrust cover or
indirectly affect biocrusts by influencing soil surface
condition and the development of vascular plants. Plant
cover and richness have been shown to reduce biocrusts
directly due to resource competition (Havrilla et al.
2019) and we also expected an indirect effect of vascular
plants by affecting soil surface condition (e.g., soil

stability). Overall goodness-of-fit probability tests were
performed to determine the absolute fit of the best
models, using the χ2 statistic. The goodness of fit test
is used to estimate the likelihood of the observed data
given an a priori model structure. Thus, high probability
values indicate that these models have highly plausible
causal structures underlying the observed correlation.
Models with low χ2 and Root Mean Error of Approxi-
mation (RMSEA<0.05) and highGoodness of Fit Index
(GFI) and R2 were selected as the best fit model for our
data. In addition, we calculated the standardized total
effects of each explanatory variables to show the total
effect of each variable. Analyses were performed using
AMOS 22 (IBM, Chicago, IL, USA) software.

Results

Biocrust cover varies with environment factors

Biocrust cover was greatest in the open (15.3 ± 1.8%;
mean ± SE), least beneath trees (2.2 ± 0.4%), and inter-
mediate in grass and shrub microsites (Fig. 1f). Hetero-
geneity (CV%) in biocrust cover among the four
microsites declined from dry subhumid (123.2 ± 6.8%)
to semiarid areas (100.5 ± 4.8%), but increased in arid
areas (111.6 ± 8.1%) (Fig. 1g).

Biocrust cover increased with increasing aridity, partic-
ularly where aridity exceeded 0.25 (i.e. dry subhumid to
arid areas; Fig. 2a), with the rate of increase greater in open
areas than under shrubs and trees (Table S2, S3 in
Appendix S3). Biocrust cover also declined in open, grass
and shrub microsites, but not beneath trees, as soils be-
came increasingly sandier (Fig. 2b). Biocrust cover de-
clined with increasing litter cover and plant cover across
all microsites, particularly under condition of low litter (<
30%; Fig. 2c) and plant (< 38%; Fig. 2d) cover.

Drivers of biocrust cover across microsites

Aridity and litter cover were the factors that were con-
sistently associated with biocrust cover across all
microsites, whereas the effects of soil sand content,
grazing intensity and plants differed among microsites.
Aridity was indirectly associated with greater biocrusts
in two ways. First, increases in aridity suppressed the
negative effect of litter cover on biocrust cover in all
microsites, or suppressed the negative effect of plant
richness in the open only (Fig. 3d). Second, increasing
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aridity had a positive effect on biocrust cover by en-
hancing the positive effect of soil stability beneath trees,
shrubs and grasses (Figs. 3a-c). These positive effects
were mediated by some negative effects of aridity. For
example, increasing aridity suppressed the positive ef-
fect of soil integrity beneath shrubs and in the open (Fig.
3b, d), while it exacerbated the negative effect of grazing
in shrub and grass microsites (Fig. 3b, c).

Among attributes of soil surface condition, litter cov-
er had the strongest effects on biocrusts (standardized
total effects [STE] = −0.26 to −0.45; Fig. 4), with in-
creasing litter cover associated with strong reductions in
biocrust cover across all microsites. However, the ef-
fects of soil stability and surface integrity differed
among microsites. Increasing biocrust cover was

associated with greater soil stability in grass, shrub and
tree microsites (Figs. 3a-c), and greater surface integrity
under shrubs and in open microsites (Fig. 3b, d).

Soil sand was negatively associated with biocrust
cover directly in shrub and grass microsites (Figs. 3b,
c; path coefficients = −0.23 and − 0.14, respectively)
and indirectly in tree, shrub and grass microsites through
its association with lower soil stability (Fig. 3a-c and 4a-
c; STE = −0.10 to −0.32). Similarly, increasing grazing
intensity was negatively associated with biocrust cover
in shrub and grass microsites (Figs, 3b, 3c; path coeffi-
cient = −0.13 and − 0.17, respectively), but reinforced
the negative effect of increasing plant richness on
biocrust cover in the open (Figs. 3d and 4d; STE =
−0.13). Plant cover and richness were generally

Fig. 2 Biocrust cover changes with (a) increasing aridity, (b) soil
sand content, (c) litter cover and (d) plant cover. The red line in
Figs. 2a–d represent the curve derived from the piecewise regres-
sion and the blue vertical broken line represents the point of

inflection. The black broken lines represent the 95% and 5%
percentiles. For Fig. 2b, lines were fitted with linear regression
for each microsite
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associated with reduced biocrust cover in shrub, grass
and open microsites, either directly, or indirectly, by
effect on reduced soil integrity (Fig. 3b-d, Fig. 4b-d).

Discussion

Our study provides strong empirical evidence that biotic
and abiotic drivers of biocrust cover vary along an
extensive aridity gradient at different spatial scales. At

the sub-continental scale, biocrust cover increased with
declining litter cover as aridity increased from humid
coastal areas to the dry interior. Variability in biocrust
cover declined from dry subhumid to semiarid areas and
was regulated by the interactions between vascular
plants and biocrusts. At the site level, biocrust cover
differed among microsites, consistent with expectation,
with the greatest cover in open areas and the least under
trees. Our results indicate that variability in biocrust
cover among microsites results from the effects of

Fig. 3 Structural equation model assessing the indirect and direct
effects of aridity, soil sand content (sand), grazing, plant and soil
surface condition (surface) on biocrust cover in tree (a), shrub (b),
grass (c) and open (d) microsite. ‘Plant’ is represented by plant
cover (PCOV) and plant richness (RICH); ‘Surface’, attributes
described the soil surface condition, comprises litter cover
(LCOV), litter depth (DPTH), soil stability (STAB), soil integrity
(INTG). Standardized path coefficients, adjacent to the arrows, are
analogous to partial correlation coefficients, and indicative of the
effect size of the relationship. The width of arrows reflects the

magnitude of the coefficient. Pathways are significant negative
(red unbroken line), significant positive (blue unbroken line) or
mixed significant negative and significant positive (black unbro-
ken lines). Non-significant pathways were not shown. Model fit:
Tree: χ2 = 8.81, df = 4, P = 0.07, R2 = 0.23, RMSEA = 0.09,
Bollen-Stine = 0.07. Shrub: χ2 = 3.04, df = 4, P = 0.55, R2 = 0.44,
RMSEA = 0, Bollen-Stine = 0.53. Grass: χ2 = 8.54, df = 4, P =
0.07, R2 = 0.39, RMSEA = 0.09, Bollen-Stine = 0.05. Open: χ2 =
6.00, df = 4, P = 0.20, R2 = 0.46, RMSEA = 0.06, Bollen-Stine =
0.24
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different drivers; soil texture, vegetation and grazing
intensity, with effects either mitigated or enhanced by
increasing aridity. For example, soil sand, plant cover
and grazing intensity were directly associated with re-
duced biocrust cover in grass and shrub microsites, and
indirectly associated with reduced biocrust cover under
trees and in open areas. Our results provide insights into
the mechanisms driving biocrust cover at both the
microsites and the sub-continental scales along an ex-
tensive aridity gradient, improving our understanding of
how small- and large-scale variability in biocrust cover
may change under future climate change scenarios.

Biotic attributes affect biocrust cover at different spatial
scales

Biotic attributes (i.e. litter cover, plant cover and rich-
ness) affected biocrust cover at both small (microsite)
and large (sub-continental) scales, with increasing litter
cover reducing biocrust cover consistently across all
microsites. Litter cover is likely to have an effect on
the microenvironment (e.g. light, moisture, temperature)
of biocrusts, with small amounts of litter promoting
biocrust growth by buffering environmental stresses
(e.g., heat and drought stress) (Belnap et al. 2016;

Fig. 4 Histograms illustrate the standardized total effects (STE:
sum of direct plus indirect effects) derived from the structural
equation modelling in tree (a), shrub (b), grass (c), and open (d)
microsite. ARID, aridity; STAB, soil stability; INTG, soil

integrity; GRAZ, grazing intensity; PCOV, plant cover; RICH,
plant richness; SAND, soil sand content; LCOV, litter cover;
DPTH, litter depth. Different colors represent different group of
driving factors (i.e. aridity, sand, grazing, surface, plant)
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Serpe et al. 2013). But this effect diminishes with in-
creasing litter quantity (Xiong and Nilsson 1999). For
example, burial beneath litter can restrict the growth of
biocrust organisms by reducing light exposure and
inhibiting its metabolisms (e.g. photosynthesis, respira-
tion), which eventually kills biocrusts through light
deprivation (Briggs andMorgan 2008). Litter might also
be associated with increased disturbance, such as in-
creased invertebrate activity (e.g. termites, litter-borne
arthropods) or create conditions for the spread of wild-
fire (Boeken and Orenstein 2001; Serpe et al. 2013;
Whitford et al. 1992).

Our results demonstrated that an increase in litter
cover would reduce biocrust cover, particularly over
30% of litter cover (Fig. 2c). Despite the positive asso-
ciation between the overstorey plant community and
litterfall, litter cover is more likely related to site-level
ecosystem productivity (Catovsky et al. 2002), which is
regulated by large-scale environmental factors such as
rainfall and temperature. For example, we found that the
suppressive effect of litter cover was mediated as sites
become more arid. As aridity increases, litter supply
declines with reductions in plant cover, allowing greater
penetration of light to the soil surface and increasing
surface niches for biocrust colonization (Belnap 2003;
Delgado-Baquerizo et al. 2013). However, the increase
in biocrust cover with aridity may be accompanied by
reductions in biocrust diversity as the response of
biocrusts is highly species specific (Maestre et al.
2015; Mallen-Cooper et al. 2018). For example, a Eu-
ropean study found that crustose and fruticose lichens
were restricted to more mesic areas than foliose species
(Matos et al. 2015), and a global study showed that
aridity was negatively related to fungal, but not moss,
richness (Delgado-Baquerizo et al. 2018).

Vascular plants coexist with biocrusts at local scales
by creating mosaics of vegetation interspersed with
biocrust-covered microsites (Maestre et al. 2010;
Zhang et al. 2016) as the result of competition and
facilitation (Havrilla et al. 2019). In our study, we found
that biocrust cover was correlated with declining vascu-
lar plant cover in shrub and grass microsites. Small
patches of vascular plants could benefit biocrusts by
reducing evaporation and increasing water availability
(Martínez et al. 2006). However, these facilitatory ef-
fects would become negative when increasing plant
cover intensifies resource competition, reduces light
availability and niches for biocrust establishment
(Dettweiler-Robinson et al. 2018; Durham et al. 2018),

particularly when plant cover exceeded about 40% (Fig.
2d). Conversely, biocrust cover in open microsites de-
clined with increasing plant richness, which could in-
tensify resource competition (e.g. water, nutrition) be-
tween vascular plants and biocrusts under conditions of
scarce resources (e.g., low moisture, low soil nutrition).
These negative effects were mitigated as conditions
became drier, providing support for the notion that the
interaction between vascular plants and biocrusts pro-
motes their coexistence under conditions of increasing
dryness (Miller and Damschen 2017; Zhang et al. 2016).

Interactions among vascular plants and biocrusts also
regulate the variability in biocrust cover among
microsites along the aridity gradient. In humid areas,
vascular plants dominate the community, with enclosed
canopies, deep contiguous litter, and low light availabil-
ity, which restrict biocrusts to small open patches
(Belnap et al. 2016; Jia et al. 2019), resulting in high
variability among microsites. In arid areas, biocrusts
have a competitive advantage over vascular plants due
to their high tolerance to desiccation, extremes of tem-
perature, and light, allowing them to occupy microsites
that would not support vascular plants (Belnap 2006).
By comparison, facilitatory and competitive effects of
vascular plants on biocrusts are more likely to be neutral
in dry subhumid and semiarid regions. An extensive
cover of biocrusts can benefit vascular plants by increas-
ing the availability of runoff water and by reducing
evaporation (Chamizo et al. 2016), but these facilitatory
effects will decline with increases in vascular plants as
patches of bare soil, and therefore runoff, decline. This
feedback process enables biocrusts to coexist with vas-
cular plants, reducing the variability in biocrust cover
among microsites (Belnap 2003; Delgado-Baquerizo
et al. 2013).

Abiotic attributes regulate biocrusts differences
among microsites

Soil texture plays an important role in determining the
fine-scale distribution of biocrusts (Belnap et al. 2016)
as it affects soil surface stability and the capacity to
retain moisture (e.g., infiltration, water-holding capaci-
ty; Noy-Meir 1973). In our study, sand content reduced
biocrust cover either directly, in shrub and grass
microsites, or indirectly, by reducing soil stability and
integrity in tree, shrub and grass microsites. The addi-
tion of fine particles to the soil can increase biocrust
development and soil stability (Felde et al. 2018),
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whereas sandy soils, often colonized by cyanobacteria,
are more susceptible to disturbance in drier environ-
ments (Chung et al. 2019). We found that the negative
effects of increasing sand content were mediated by
increasing aridity. In drier environments, overstorey
canopies buffer the variability in environmental
stressors (e.g., high evaporation, light damage, extreme
temperatures; Li et al. 2010), minimise soil disturbances
(e.g., wind and water erosion; Maestre 2003) and cap-
ture limited resources (e.g., fine soil particles, water,
nutrients; Ochoa-Hueso et al. 2018), further stabilizing
the soil surface and providing suitable conditions for
biocrust development (Belnap et al. 2016). We did not
detect any significant effect of soil texture on biocrust
cover in the open, with sand content only weakly affect-
ing soil stability. This might be explained by the fact that
open microsites are more often disturbed by livestock
trampling or more susceptible to wind and water erosion
than biocrusts beneath the protective cover of plants.
Thus, the potential impact of disturbance and erosion on
soil stability may outweigh the influence of soil texture
in open microsites (Belnap and Gillette 1998), resulting
in the weak effect of sand on biocrust cover that we
found.

Negative effects of grazing on biocrusts under grasses
and shrubs

Grazing intensity affects the fine-scale distribution of
biocrust cover by trampling and surface disturbance,
which varies among microsites. We found that grazing
generally reduced biocrust cover in grass and shrub
microsites, consistent with abundant literatures on the
effects of grazing-induced disturbance on biocrusts
(Concostrina-Zubiri et al. 2017; Daryanto and Eldridge
2010; Eldridge et al. 2017; Velasco Ayuso et al. 2019).
Such a negative effect on biocrusts was exacerbated as
grazing intensity increased with aridity, resulting in
greater herbivory and trampling on shrub and grass
microsites in drier areas. Increasing grazing was also
indirectly associated with reduced biocrust cover in the
open, via an increase in the suppressive effect of plant
richness, which would intensify resource competition
(i.e. water, nutrition) and restrict the growth of biocrusts
(Belnap 2003; Reisner et al. 2013).We failed to find any
significant effects of grazing on biocrust cover beneath
trees, potentially due to the weak effect of herbivory and
trampling beneath trees or the fact that sites beneath
trees are rarely preferred habitats for biocrusts.

Compared with shrub and grass microsites, trees had
sparse groundstorey plant cover, fewer palatable species
and therefore, a lower level of herbivory. Further, high
levels of litter cover (80% on average; Fig. S2 in Ap-
pendix S4) would mitigate any negative effect of tram-
pling or resting by herbivores on the soil surface (Li
et al. 2014), thereby resulting in a weak effect of grazing
on biocrust cover.

Concluding remarks

Our study indicates that different biotic and abiotic
attributes are associated with biocrust cover at microsite
and sub-continental scales along an aridity gradient,
suggesting that environmental changes resulting from
an increase in aridity could produce very different out-
comes at the two spatial scales. Based on our results, it is
likely that projected increases in dryness under current
climate change scenarios will increase biocrust cover
across the continent, possibly with a more homogeneous
biocrust composition and therefore reduced function, as
suggested by continental research (Delgado-Baquerizo
et al. 2018). Changes in biocrust cover among
microsites are more likely related to uncertain changes
in grazing intensity under climate change. Although
increasing dryness is predicted to reduce the amount of
land available to support livestock grazing (Mysterud
et al. 2001), increasing pressure on a smaller land base
will likely intensify any negative effects of grazing
(Cobon et al. 2009). The combination of increasing
dryness and more intensive livestock grazing is likely
to reduce biocrust cover, composition and function
(Mallen-Cooper et al. 2018), particularly in grass and
shrub microsites, leading to increased soil degradation
in drylands (Concostrina-Zubiri et al. 2017) and poten-
tially, lower inputs of soil nitrogen (N) from N-fixing
biocrusts (Eldridge et al. 2017; Delgado-Baquerizo et al.
2016). Future land management decisions should con-
sider the effects of grazing intensity on biocrusts, which
are critically important for maintaining a range of essen-
tial ecosystem services and functions in drylands.
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