
Global Ecol Biogeogr. 2019;1–19.	 wileyonlinelibrary.com/journal/geb�  |  1© 2019 John Wiley & Sons Ltd

 

Received: 28 March 2018  |  Revised: 3 November 2018  |  Accepted: 5 November 2018
DOI: 10.1111/geb.12877

M E T A ‐ A N A L Y S I S

Global meta‐analysis of soil‐disturbing vertebrates reveals 
strong effects on ecosystem patterns and processes

Max Mallen‐Cooper1,2  | Shinichi Nakagawa2 | David J. Eldridge1,2

1Centre for Ecosystem Science, School 
of Biological, Earth and Environmental 
Sciences, University of New South Wales, 
Sydney, New South Wales, Australia
2Ecology and Evolution Research 
Centre, School of Biological, Earth and 
Environmental Sciences, University of New 
South Wales, Sydney, New South Wales, 
Australia

Correspondence
Max Mallen‐Cooper, Centre for Ecosystem 
Science, School of Biological, Earth and 
Environmental Sciences, University of New 
South Wales, Sydney, New South Wales, 
2052, Australia.
Email: m.mallen-cooper@unsw.edu.au

Funding information
Australian Research Council, Grant/Award 
Number: FT130100268

Editor: Sally Keith

Abstract
Aim: Organisms that disturb the soil while foraging or creating shelter (ecosystem 
engineers) can have profound effects on ecosystems. Soil ejecta from these distur-
bances can enhance surface nutrients and the resulting depressions accrue organic 
matter and develop into biological hotspots. Here, we describe a global meta‐analysis 
of studies that assessed the impacts of vertebrate soil disturbance on both biotic and 
abiotic components of ecosystems.
Location: Global land surface.
Time period: 1941–2016.
Major taxa studied: Vertebrates.
Methods: After conducting a systematic literature search, we quantitatively synthe-
sized the findings of 149 published studies that compared disturbed and undisturbed 
surfaces. Our meta‐analysis included 64 engineer species, primarily comprised of ro-
dents and a subset of other mammals.
Results: We found that vertebrate soil disturbance significantly enhanced soil nitro-
gen (by 77%) and phosphorus (35%), and the productivity (32%) and recruitment 
(32%) of vascular plants. Disturbances had a greater cover of bare soil (126%) than 
undisturbed controls, and higher abundances of secondary vertebrates (1,233%), 
that use pre‐constructed burrows as shelter and foraging grounds. Soil disturbance 
significantly reduced water run‐off (63%) and the abundance of biocrusts (82%). Soil 
disturbance effects generally intensified with increasing aridity, and the magnitude 
of soil disturbance effects was not moderated by the area of the disturbance. 
Disturbances older than 12 months were more distinct from the surrounding matrix 
than fresh disturbances. The phylogeny of engineers was unrelated to their ecosys-
tem effects, indicating that the same functionality could readily evolve in different 
taxa.
Main conclusions: In general, disturbances become localized patches of elevated 
functioning, providing strong evidence that vertebrate engineers, especially those in 
drylands, are an important source of environmental heterogeneity.
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1  | INTRODUCTION

Positive (facilitatory) interactions among organisms are equally 
as important as negative (competitive) interactions in structur-
ing ecosystems (see e.g. Bruno, Stachowicz, & Bertness, 2003; 
Machicote, Branch, & Villarreal, 2004). Terrestrial vertebrates, 
for example, can modify plant species composition by dispersing 
seeds or alter the dominant plant growth form through grazing 
(Chew, 1974; Kerley & Whitford, 2000). Positive interactions can 
also result from non‐trophic mechanisms such as ecosystem en-
gineering, whereby an organism induces a change in the physical 
environment that alters the availability of resources to other or-
ganisms or to themselves (Jones, Lawton, & Shachak, 1994). For 
example, Indian crested porcupines (Hystrix indica) create surface 
pits in order to consume bulbs of the desert tulip (Tulipa systola) in 
the Negev Desert. Although the porcupines consume 60–90% of 
the bulbs, the conditions for the remaining bulbs are enhanced by 
the additional water and nutrient‐rich sediment captured by the 
pits (Gutterman, 1987). Soil disturbances such as these are the 
most well‐documented form of ecosystem engineering in terres-
trial vertebrates (Coggan, Hayward, & Gibb, 2018) and will be the 
focus of the present study.

It is useful to conceptualize soil disturbance as two distinct phys-
ical processes resulting in (a) the excavation of a pit, scrape, rest-
ing form or burrow and (b) the deposition of a mound of soil (ejecta 
mound) adjacent to the disturbance (Figure 1). The depression cre-
ated by soil removal acts as an accreting surface, which gradually 
infills with eroding sediment, litter, water, seeds and other organic 
materials. Vacated burrows often become habitat for secondary an-
imals, such as burrowing owls (Athene cunicularia hypugaea), Florida 
mice (Podomys floridanus) and various lizard and beetle species, 
which use the burrows as shelter and foraging grounds (Casas‐
Crivillé & Valera, 2005; Davidson, Lightfoot, & McIntyre, 2008; 
Lantz, Conway, & Anderson, 2007). The ejecta mound acts as an 
eroding surface and the constituent material is redistributed across 
the landscape by fluvial and aeolian erosion until the original surface 
eventually re‐emerges. In some cases, ejecta mounds may be stabi-
lized by vegetation and biocrust, and become persistent topograph-
ical features (Eldridge, 2004).

In the act of removing soil, vertebrate engineers remove ground-
storey plants and expose the subsoil, often reducing soil aggrega-
tion and altering surface microclimate (Platt, Kolb, Kunhardt, Milo, 
& New, 2016). Soil removal reduces run‐off, and has often been 
reported to increase soil moisture and infiltration, by creating a 
macropore, removing hydrophobic soil crusts or compacted layers 
and clearing plants, which extract a portion of soil water (Valentine, 
Bretz, Ruthrof, Fisher, & Hardy, 2017). Soil ejecta, however, covers 
an existing soil surface, smothering groundstorey plants. Soil ejecta 
often has a markedly different chemical signature to the original top-
soil in terms of pH, cations, and carbon and nitrogen pools (Eldridge 
& Koen, 2008; Kerley, Whitford, & Kay, 2004). As soil nutrient pools 
recover in the depression and the ejecta is redistributed, plants and 
soil organisms begin to recolonize the disturbed surfaces.

We analysed published data on the effects of vertebrate engi-
neers on plants, soils and associated biota to derive a global syn-
thesis. There have been several important qualitative reviews of 
vertebrate engineers, with foci on biotic interactions (Coggan et al., 
2018), soil function (Platt et al., 2016) and specific systems such as 
drylands (Whitford & Kay, 1999). However, quantitative syntheses 
thus far have been restricted to properties relating to diversity and 
biomass (Romero, Gonçalves‐Souza, Vieira, & Koricheva, 2015; Root‐
Bernstein & Ebensperger, 2013). There has yet to be a quantitative 
synthesis at the global scale that examines both the biotic and abiotic 
effects of vertebrate engineers. Such a synthesis is timely if we are 
to advance our understanding of the ecological dimensions of verte-
brate engineers, how they influence a wide range of patterns and pro-
cesses across a range of ecosystems, how these impacts vary under 
different climate conditions, and thus the likely impacts of their loss 
from ecosystems or their reintroduction into degraded ecosystems.

Ecosystem theory suggests that the impact of vertebrate engi-
neers should increase with declining ecosystem productivity (Wright 
and Jones 2004). This would occur because the capture of even small 
amounts of resources such as water and organic matter within surface 
disturbances in resource‐poor environments would result in the cre-
ation of patches that are distinctly resource‐rich compared with the 

F I G U R E  1  Conceptual diagram of soil disturbance, showing 
the two types of structures produced (an ejecta mound and a 
depression) and how they change over time. The depression infills 
with eroding sediment, water and organic matter. The ejecta 
mound is redistributed across the landscape by erosion. Both types 
of structures can lead to compositional shifts in biota
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surrounding matrix. We might also expect that larger disturbances 
would have more pronounced impacts on ecosystem properties be-
cause they could influence processes that occur at broader spatial 
scales (Wiens, 1989). Vegetation is also known to recover more slowly 
on larger soil disturbances (Rogers & Hartnett, 2001). Consequently 
our synthesis aimed to address three important questions relating to 
how vertebrate engineers affect ecosystems by disturbing soil: (a) 
what are the global ecosystem effects of soil disturbance by verte-
brates?; (b) are any impacts of disturbance greater in more arid eco-
systems?; and (c) does the impact of disturbance vary with the size or 
age of the disturbance? We also examined whether phylogeny was 
important in explaining variation in these effects among species.

2  | METHODS

2.1 | Literature search

Records were collected by systematically searching online databases 
and then screened in accordance with Preferred Reporting Items for 
Systematic Reviews and Meta‐Analyses (PRISMA) guidelines (see 
Supporting Information Appendix S1). A list of data sources can be 
found in the Appendix. Soil disturbance is known by many terms, de-
pending on the field of science, the disturbing agents and the biome 
in which the disturbance is being investigated (Cavin & Butler, 2015). 
Ecosystem engineering and several variants of biopedturbation (e.g. 
faunalpedturbation) are used by ecologists, while zoogeomorphol-
ogy and ichnology are more commonly used by geoscientists. We 
captured research from both fields by searching Google Scholar and 
the Institute for Scientific Information (ISI) Web of Knowledge for 
the following keyword strings: biopedturbation, biopedoturbation, 
faunalpedoturbation, faunalturbation, ‘foraging pits’ and zoogeo-
morphology. Records were also retrieved from the complete refer-
ence lists of seven key review papers (see Supporting Information 
Appendix S1). The relevant literature on wild boar (Sus scrofa) was so 
extensive that a study by Barrios‐Garcia and Ballari (2008), despite 
its singular focus on wild boar, was chosen as a key paper to ensure 
that all pertinent studies were captured by our search. Studies pub-
lished at any date up to and including November 2016 were included.

Retrieved records were screened to identify primary peer‐re-
viewed publications that compared an ecosystem effect of soil dis-
turbance by a vertebrate against a paired undisturbed control. Only 
one included study was manipulative (Prugh & Brashares, 2012), 
and the majority of comparisons were conducted at the patch scale 
(disturbance versus undisturbed adjacent control). We restricted our 
study to terrestrial ecosystems and excluded human‐created dis-
turbances. We chose not to include soil temperature and cations as 
properties because their roles in ecosystem processes are not well 
characterized. Only clay content was included as a measure of soil 
texture due to strong correlations with silt and sand content. We 
excluded aquatic disturbing agents unless they directly impacted 
a terrestrial property. The full criteria are shown in Supporting 
Information Appendix S1. From the studies that satisfied our cri-
teria, we extracted the raw means and variances of the measured 

ecosystem properties. Data presented in figures were extracted 
using the Figure Calibration plugin in ImageJ (Schneider, Rasband, 
Eliceiri, Schindelin, & Arganda‐Carreras, 2012).

2.2 | Moderating variables

We collected data on three moderators: aridity, disturbance area 
and disturbance age. We extracted values of the aridity index 
(precipitation/potential evapotranspiration) for each location from 
the Consultative Group for International Agricultural Research 
Consortium for Spatial Information (CGIAR‐CSI) Global‐Aridity 
Database (http://www.cgiar-csi.org; Zomer, Trabucco, Bossio, & 
Verchot, 2008). We took the additive inverse of the aridity index (i.e. 
aridity = −1 × aridity index), so that higher values corresponded to 
greater dryness. The disturbance area and body mass of each verte-
brate species were extracted from various sources (see Supporting 
Information Appendix S2). Disturbance area was calculated as the 
total horizontal area of disturbed soil, including underground tun-
nels and ejecta mounds. Aridity and disturbance area were log(x) 
transformed to improve normality and z‐transformed (standardized) 
in order to improve the interpretation of regression coefficients by 
putting them all on a common scale (Schielzeth, 2010).

Exact disturbance age was rarely reported, as this can usually only 
be determined in artificial disturbances, but we were able to extract 
a binary variable from most studies comprising fresh disturbances 
(< 1 year old) and old disturbances (≥ 1 year old). ‘Active’ or ‘occupied’ 
soil disturbances were treated as fresh disturbances, although we ac-
knowledge that this approach is coarse and does not capture the com-
plexities of disturbance history. Fresh disturbances were assigned a 
value of −1 and old disturbances a value of 1, such that the mean was 
approximately 0 and standard deviation approximately 1, and there-
fore the variable could be reliably compared with other standardized 
moderators (see Gelman, 2008). Note that this coding does not allow 
for the calculation of separate slopes for fresh and old disturbances. 
Rather, the single slope estimate indicates the relative effects (slope 
is positive when the effect is greater in old disturbances).

2.3 | Data analysis

To examine the mean effects of soil disturbance, we calculated the 
log response ratio, lnRR, for each data pair (Hedges, Gurevitch, & 
Curtis, 1999). The log response ratio was calculated as ln(xD) – ln(xU), 
where xD is the mean value for the disturbed site and xU the value 
for the undisturbed site. Thus, negative values of lnRR represent 
situations where soil disturbance reduces a particular property and 
vice versa. We used a single imputation to manage zeros in the data 
set, which comprised 0.7% of all effect sizes (Lajeunesse, 2013; 
Nakagawa, 2015). That is, when xD = 0, we set lnRR to the lowest 
value of lnRR in the data set and then solved for xD. The same pro-
cess was used to replace zeros in undisturbed means, but in this case, 
we set lnRR to the highest value. For zeros in standard deviation (SD), 
we performed a linear regression of ln(x) ~ ln(SD) and used the re-
gression coefficients to back‐calculate SD values (Nakagawa, 2015).

://www.cgiar-csi.org
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Our final data set included 24 ecosystem properties. Properties 
with fewer than 10 effect sizes and that could not be grouped into 
other properties were removed (e.g. biocrust richness). The final 
data set comprised 1,609 effect sizes from 149 studies, published 
from 1941 to 2016 (see Appendix).

The intercept model (i.e. meta‐analysis) and meta‐regression 
were performed in R (R Core Team, 2017) using the metafor  pack-
age version 1.9–8 (Viechtbauer, 2010). The intercept model is 
the model that derives the centre and spread of all effect sizes, 
while the meta‐regression incorporates moderators (fixed effects) 
to account for variation in the effect sizes. The estimate derived 
from the intercept model is largely uninformative because we ex-
pect many of the ecosystem effects of soil disturbance to have 
different signs and effectively cancel out. However, the intercept 
model is useful in partitioning variance among random factors, 
which in this case are phylogeny, species, study and residual vari-
ance. Phylogeny was implemented as a correlation matrix derived 
from an ultrametric phylogenetic tree, which was based on data 
provided by the Open Tree Taxonomy (Hinchliff, Smith, Allman, 
Burleigh, & Chaudhary, 2015). The transformation between phylo-
genetic tree and correlation matrix, using the ‘vcv’ function in the 
R package ape (Paradis, Claude, & Strimmer, 2004), assumed the 
Brownian model of evolution. The intercept model enabled us to 
partition the variance among random factors. I2 (heterogeneity) is 
the variation among effect sizes that is not accounted for by the 
sampling error variance (Higgins & Thompson, 2002). The meta‐re-
gression included four moderators – disturbance age, disturbance 
area, property and the interaction of property and aridity – in 
addition to the four random effects. As a measure of variance in 
each model, we created a covariance matrix to account for effect 
sizes with shared controls (Noble, Lagisz, & O'dea, & Nakagawa, 
2017). True intercepts and standard errors were calculated for 
each level of ecosystem property so that results reflected group 
means rather than contrasts to a reference group. We considered 
a result significant when the 95% confidence interval (CI) did not 
cross zero. We calculated the variance accounted by moderators 
as marginal R2 (sensu Nakagawa & Schielzeth, 2013).

Only two vertebrate species were measured in their non‐native 
range, the European rabbit (Oryctolagus cuniculus) and the wild boar. 
These species were also measured in their native ranges, allowing us 
to explore differences in soil disturbance effects among native and 
non‐native ranges. Ecosystem engineers in non‐native ranges are 
known in some cases to promote further invasions of exotic species, 
so one difference might be a greater effect on biotic composition in 
the non‐native range (Crooks, 2002). We therefore conducted a sep-
arate meta‐regression with range status as a fixed effect and study 
as a random effect using only data from these two species (N = 235). 
These data were insufficient to include interactions with different 
ecosystem properties in the model.

2.4 | Publication bias

Funnel plots were produced by plotting the precision (or inverse 
standard error) of log response ratios against the meta‐analytic 

residuals (sensu Nakagawa & Santos, 2012), which were extracted 
using Markov chain Monte Carlo techniques in the R package 
MCMCglmm version 2.24 (Hadfield, 2010; Hadfield & Nakagawa, 
2010). We also performed a trim‐and‐fill test (Duval & Tweedie, 
2000) using the R0 estimator and a modified version of Egger regres-
sion (sensu Sterne & Egger, 2005) to assess publication bias.

3  | RESULTS

3.1 | Variety and extent of soil disturbances by 
vertebrates

Our final data set included 64 vertebrate animal species; 60 of 
which were mammals and 40 of which were rodents (see Supporting 
Information Appendix S2). Birds and reptiles were markedly under-
represented. Vertebrate engineers caused five types of soil distur-
bance: burrows (73.4% of animals), foraging digs (17.2%), resting digs 
(3.1%), areas of trampled soil (1.6%) and wallows (1.6%). Two animals 
in the data set, the greater bilby (Macrotis lagotis) and the burrowing 
bettong (Bettongia lesueur), had documented effects of both foraging 
digs and much larger burrows. The distribution of animal mass was 
highly skewed towards smaller animals, with 75% of species weigh-
ing less than 5 kg, although the study did include several large un-
gulates (see Supporting Information Appendix S2). Wild boar, which 
disturb soil while excavating plant tubers and fossorial animals, con-
stituted 20% of the extracted estimates (15% of studies), the most of 
any included species. Larger animals tended to produce small forag-
ing digs and resting forms rather than burrows, which were generally 
more spatially expansive.

The vast majority of studies (95.3%) were conducted in the mid‐
latitudes, with the remaining studies (4.7%) being conducted in the 
tropics (Figure 2). The USA was an area of particularly high research 
output (46% of studies). Apart from tundra (Ntundra = 4), all major 
community types were well represented (Nforest = 261, Nwoodland = 
212, Nshrubland = 458, Ngrassland = 674).

3.2 | Effects of soil disturbance on 
ecosystem properties

Our meta‐analysis showed that soil disturbance did not consistently 
enhance or reduce the studied ecosystem properties [lnRR: 0.039 
(95% CI: −0.053 – 0.130); Table 1]. Rather, the effects of soil dis-
turbance varied among properties (Figure 3, Table 2). Disturbance 
significantly enhanced plant recruitment and productivity, both by 
32%, and soil nitrogen and phosphorus, by 77 and 35%, respectively. 
Disturbed areas also had more bare soil (126%), and more second-
ary vertebrates (e.g. various birds and lizards) using the space as 
habitat (1,233%). The abundances of vascular plants and biocrusts 
were reduced by 23 and 82%, respectively, and run‐off was reduced 
by 63%. Although not significant, disturbance generally increased 
soil respiration, clay content, invertebrate activity and soil moisture, 
while reducing soil compaction and stability.

The marginal R2 from the meta‐regression model was 27.52. The 
effects of soil disturbance did not vary significantly with disturbance 
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area [lnRR: −0.056 (95% CI: −0.151 – 0.039)]. However, disturbances 
≥ 1 year old were more distinct from undisturbed controls (typically 
the surrounding matrix) than fresh disturbances. Modelling the in-
teraction of ecosystem property and aridity revealed that, for most 
properties, disturbances became increasingly distinct from the sur-
rounding matrix as aridity increased (Figure 3). Most notably, distur-
bance effects on soil nitrogen and phosphorus, soil respiration, and 
plant productivity and density were greater in more arid systems. By 
contrast, the effects of soil disturbance on biocrust abundance, root 
biomass and the abundance of secondary vertebrates were greater 
in more humid systems.

We found very high heterogeneity in the intercept model (I2 
= .997), which indicates a high degree of unexplained variation 
(Table 1). Soil‐disturbing activities were largely unrelated to the phy-
logenetic relatedness of animal species (I2[phylogeny] < .001) but were 
similar within a species (I2[species] = .024). The model also showed 
moderate between‐study variance (I2[study] = .255) and high variance 
at the effect size level (I2[residual] = .718).

For European rabbits and wild boar, there were negligible dif-
ferences in soil disturbance effects among native and non‐native 
ranges (Supporting Information Appendix S3).

3.3 | Publication bias

Visual inspection revealed no obvious asymmetry in the funnel plot 
(Figure 4). Trim‐and‐fill tests supported this assertion, estimating no 
missing studies. Egger regression further indicated no significant 
publication bias in the data (z = 1.751, p = .080).

4  | DISCUSSION

Much has been written on the non‐trophic, engineering effects of 
soil‐disturbing animals on properties as broad as soil chemistry, hab-
itat amelioration and plant community dynamics (Hastings, Byers, 
Crooks, Cuddington, & Jones, 2007; Lavelle, Decaëns, Aubert, 
Barot, & Blouin, 2006; Wright, Jones, & Flecker, 2002). Despite this 
large body of work, there has been no quantitative global synthesis 
of animal effects on ecosystems across the full range of ecosystem 
properties. Here, we used an extensive global data set of peer‐re-
viewed literature to assess the non‐trophic effects of soil‐disturb-
ing vertebrates. Compared with undisturbed soil, we found that 
soil disturbance reduced plant abundance, biocrust abundance and 

F I G U R E  2  World map showing the locations of all included studies of soil‐disturbing vertebrates

TA B L E  1  Summary of global meta‐analysis of soil‐disturbing vertebrates (n = number of effect sizes, k = number of soil‐disturbing 
species, CI = confidence interval)

n k Estimate SE I2
[total] I2

[phylogeny] I2
[species] I2

[study] I2
[residual] Lower CI (5%) Upper CI (95%)

1,609 64 0.039 0.047 .997 .000 .024 .255 .718 −0.053 0.130
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run‐off, and enhanced soil nitrogen, soil phosphorus, plant produc-
tivity, plant recruitment, the abundance of secondary vertebrates 
and the cover of bare soil. Most of these effects intensified with 
increasing aridity. Disturbances that had recovered for at least 1 
year were more distinct from the surrounding matrix than fresh 

disturbances. There was no evidence that the phylogeny of engi-
neers is an important determinant of their ecosystem effects. Our 
study provides strong empirical evidence that surface disturbance 
by vertebrate engineers has substantial effects on a range of eco-
system properties.

F I G U R E  3  The effects of disturbance age and area (‘main effects’) on vertebrate soil disturbance, and the effects of vertebrate soil 
disturbance on ecosystem properties and the interaction of properties and aridity. Significant results are shown in red (negative) and blue 
(positive), and error bars represent 95% confidence intervals. One property, the abundance of secondary vertebrates, was excluded from the 
figure for graphical reasons (but see Table 2)
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TA B L E  2  Summary of meta‐regression model (R2 = 27.52; n = number of effect sizes; k = number of soil‐disturbing species)

Moderator Levels n k Estimate SE Lower CI (5%) Upper CI (95%)

Disturbance 
age

1,609 64 0.091 0.03 0.032 0.149

Disturbance 
area

1609 64 −0.056 0.049 −0.151 0.039

Property Bare soil 33 15 0.817 0.133 0.557 1.077

Biocrust abundance 15 6 −1.695 0.228 −2.141 −1.249

Clay 24 9 0.198 0.15 −0.096 0.492

Invertebrate abundance 47 7 0.169 0.166 −0.157 0.494

Invertebrate richness 14 6 0.153 0.21 −0.259 0.565

Litter 65 15 −0.241 0.111 −0.457 −0.024

Microbial activity 46 10 0.062 0.123 −0.18 0.303

Plant abundance 228 28 −0.256 0.076 −0.405 −0.107

Plant density 46 9 0.228 0.154 −0.075 0.53

Plant height 23 6 −0.593 0.176 −0.938 −0.247

Plant productivity 96 24 0.275 0.096 0.086 0.463

Plant recruitment 61 12 0.278 0.139 0.006 0.55

Plant richness 220 31 −0.027 0.071 −0.165 0.111

Root biomass 29 10 −0.477 0.149 −0.769 −0.185

Run‐off 21 6 −0.983 0.2 −1.375 −0.59

Soil compaction 69 17 −0.177 0.095 −0.364 0.01

Soil C 125 23 −0.026 0.082 −0.186 0.134

Soil infiltration 39 8 0.131 0.178 −0.217 0.479

Soil N 158 28 0.569 0.079 0.413 0.724

Soil P 58 16 0.298 0.116 0.07 0.526

Soil pH 67 18 0.02 0.094 −0.165 0.205

Soil respiration 12 6 0.31 0.226 −0.133 0.752

Soil stability 17 5 −0.222 0.189 −0.593 0.148

Soil moisture 67 15 0.156 0.1 −0.04 0.351

Vertebrate abundance 29 3 2.591 0.752 1.117 4.065

Property * 
aridity

Bare soil 33 15 −0.113 0.118 −0.344 0.118

Biocrust abundance 15 6 −0.822 0.237 −1.287 −0.356

Clay 24 9 0.293 0.269 −0.234 0.819

Invertebrate abundance 47 7 0.443 0.249 −0.044 0.931

Invertebrate richness 14 6 0.447 0.289 −0.118 1.013

Litter 65 15 0.259 0.185 −0.103 0.62

Microbial activity 46 10 0.04 0.196 −0.343 0.424

Plant abundance 228 28 0.327 0.168 −0.003 0.657

Plant density 46 9 0.491 0.189 0.121 0.862

Plant height 23 6 −0.303 0.268 −0.828 0.222

Plant productivity 96 24 0.605 0.188 0.236 0.973

Plant recruitment 61 12 0.266 0.267 −0.258 0.79

Plant richness 220 31 0.24 0.172 −0.097 0.578

Root biomass 29 10 −1.118 0.313 −1.732 −0.505

Run‐off 21 6 −0.268 0.277 −0.81 0.274

Soil compaction 69 17 0.183 0.197 −0.203 0.569

Soil C 125 23 0.319 0.184 −0.042 0.679
(Continues)
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In general, the findings from our meta‐analysis are consistent 
with our predictions. It is clear that burrows are important habitat 
for secondary vertebrates, with 12 times greater abundances than 
undisturbed surfaces. In some cases, secondary burrow inhabitants 
can further modify the disturbance, initiating a “burrowing cascade” 
(Kinlaw & Grasmueck, 2012). Unsurprisingly, run‐off was reduced 
by disturbance, which is known to enhance soil porosity and break 
up hydrophobic soil crusts (Platt et al., 2016). Elevated levels of 
soil nitrogen and phosphorus in disturbances are probably due to 
trapped organic matter (James, Eldridge, & Hill, 2009), and in some 
cases, nutrient‐rich soils being translocated from deeper soil layers 
during excavation (Platt et al., 2016). Non‐engineering effects, such 
as excretions and food residue left by the animal, could have also 
played a role in this nutrient effect (Platt et al., 2016). Our analysis 
revealed that soil disturbances promote plant recruitment and pro-
ductivity, reinforcing the notion that disturbances are favourable 
sites for plant germination and growth, largely due to the elevated 
nutrient levels (Alkon, 1999; James et al., 2009). The finding that 

disturbances reduced plant height is probably confounded by bur-
rowing animals actively consuming or clearing vegetation around the 
burrow (Arias, Quintana, & Cagnoni, 2005; Eldridge & Myers, 2001; 
Whicker & Detling, 1988).

Given that disturbance generally promotes plant recruitment, 
the finding that soil disturbance reduces plant abundance might 
seem counter‐intuitive. However, most (73%) of the plant abundance 
measurements were recorded within 1 year of the disturbance being 
created. These data are thus likely to represent a temporary phase 
between plants being cleared or smothered during excavation and 
new plants recolonizing. Rates of plant recolonization on soil distur-
bances are not well known, but in a humid grassland system, Rogers, 
Hartnett, and Elder (2001) found that plant richness and biomass 
recovered to pre‐disturbance levels after 2 years. Increases in bare 
soil cover are also, in large part, representative of the initial phase 
of post‐disturbance recovery, with 76% of measurements recorded 
within 1 year of disturbance. Although biocrust effects are similarly 
biased, disturbances might also reduce biocrust abundance in the 

F I G U R E  4  Funnel plot showing 
precision (inverse standard error) 
against meta‐analytic residuals from the 
meta‐regression model of the effects of 
vertebrate soil disturbance. The dashed 
line represents the meta‐analytic mean. 
lnRR = log response ratio

Moderator Levels n k Estimate SE Lower CI (5%) Upper CI (95%)

Soil infiltration 39 8 0.392 0.273 −0.143 0.926

Soil N 158 28 0.354 0.18 0.001 0.707

Soil P 58 16 0.476 0.207 0.071 0.88

Soil pH 67 18 0.268 0.19 −0.105 0.64

Soil respiration 12 6 0.608 0.217 0.182 1.034

Soil stability 17 5 0.21 0.304 −0.385 0.806

Soil moisture 67 15 0.376 0.195 −0.006 0.758

Vertebrate abundance 29 3 −6.59 2.841 −12.157 −1.023

TABLE 2 (Continued)



     |  9MALLEN‐COOPER et al.

long term by promoting vascular plant recruitment and productivity. 
Vascular plants tend to suppress biocrusts through shading and litter 
fall (Zhang, Aradottir, Serpe, & Boeken, 2016).

Soil disturbance initiates substantial shifts in biotic community 
composition so that accreting and eroding surfaces often support 
a community that is distinct from the surrounding matrix (Aplet, 
Anderson, & Stone, 1991; Gómez‐Garcia, Borghi, & Giannoni, 1995; 
Jones, Halpern, & Niederer, 2008). Shifts may occur stochastically 
or because disturbances favour organisms with particular resource 
requirements or traits relating to colonization and disturbance toler-
ance (Eldridge & James, 2009). Past studies have generally observed 
a shift towards more annual plant dominated communities (Eldridge 
& Simpson, 2002; Kyle, Kulmatiski, & Beard, 2008; Moroka, Beck, 
& Pieper, 1982). While disturbances often support distinct species 
assemblages, overall richness may not change. Our finding that soil 
disturbance did not have a significant effect on plant or inverte-
brate richness either indicates that richness tends to be maintained 
through compositional shifts or that richness effects are highly vari-
able among different systems. The latter explanation is supported by 
Root‐Bernstein and Ebensperger (2013), who report that soil distur-
bance tends to have strong negative or positive effects on richness, 
depending on factors such as study scale and fertility. Although unde-
tectable by our patch‐scale analysis, reported shifts in biotic compo-
sition indicate that soil disturbance plays a critical role in maintaining 
a mosaic of patches at the landscape scale (Eldridge & James, 2009; 
Korn & Korn, 1989; Yoshihara, Ohkuro, Bayarbaatar, & Takeuchi, 
2009). For example, McMillan, Pfeiffer, and Kaufman (2011) found 
that 16% of their recorded plant species only occurred in bison wal-
lows, implying that soil disturbances can be a refuge for species that 
cannot persist elsewhere. Parallels can be drawn to other forms of 
disturbance, such as fire or treefalls, which also promote species rich-
ness by enhancing environmental heterogeneity (Jonsson & Esseen, 
1990; Safford & Harrison, 2004; Stein, Gerstner, & Kreft, 2014).

A recurring issue in the biopedturbation literature is the lack of 
temporal replication (Coggan et al., 2018). While some effects of 
soil disturbance are instantaneous (e.g. enhanced surface rough-
ness), others occur after several months or years. These effects are 
also variable in time. For example, Gutterman, Golan, and Garsani 
(1990) report that plant richness and biomass followed a unimodal 
relationship with time such that they were maximized when a 
porcupine (Hystrix indica) digging was 50–60% infilled. Using a 
coarse binary index, we were able to detect a general effect of 
disturbance age, indicating that many effects of disturbance may 
intensify with age. Although we were unable to model the interac-
tion of age and ecosystem property due to statistical limitations, 
we expect this effect is driven by soil nutrients, which gradually 
accrue over time, and properties associated with plants, which re-
colonize over months or years depending on certain traits (Rogers 
& Hartnett, 2001). Further studies are needed to improve our un-
derstanding of the progression of ecosystem effects throughout 
the life of a soil disturbance.

It is thought that disturbances are particularly important in dry-
lands, creating fertile ‘islands’ of locally elevated nutrients, which 

can be the only niches able to support biotic activity in the otherwise 
resource‐poor matrix (Garner & Steinberger, 1989; James & Eldridge, 
2007; Ochoa‐Hueso, Eldridge, Delgado‐Baquerizo, Soliveres, & 
Bowker, 2018). This assertion was borne out in our results, which 
showed that the effects of soil disturbance on most properties in-
tensified with increasing aridity. The role of soil‐disturbing verte-
brates as a source of heterogeneity is thus more important in low 
productivity systems. We found significant positive interactions be-
tween aridity, and plant productivity and density, and soil P and N. 
Our work also suggests, therefore, that the effects of soil‐disturbing 
animals on these properties will increase as global drylands expe-
rience shifts to lower rainfall and higher temperatures (Huang, Yu, 
Guan, Wang, & Guo, 2016). For example, disturbances might par-
tially mediate reductions in plant productivity with increases in arid-
ity. Similarly, soil P, which is largely under abiotic control and derived 
mainly from parent material (Lambers, Brundrett, Raven, & Hopper, 
2011), is likely to increase with the increased soil disturbance and 
erosion that typically accompanies increased aridity.

Our study failed to find an important effect of phylogeny, indi-
cating that effects are not phylogenetically controlled and therefore, 
that the same functionality could readily evolve in different taxa. 
However, given that 94% of the ecosystem engineers in our study 
were mammals (67% of which were rodents), additional studies on 
the effects of soil disturbance by amphibians, reptiles and birds are 
necessary to confirm there are no phylogenetic effects. We did find 
that engineers from the same species tended to have similar distur-
bance effects, which could be driven by similarities in disturbance 
morphologies and rates of production (Eldridge, Koen, Killgore, 
Huang, & Whitford, 2012). With respect to boar and rabbit distur-
bances, the finding that effects were consistent across native and 
non‐native ranges indicates that ecosystems respond similarly to the 
same type of disturbance.

There is considerable misunderstanding of the ecological im-
portance of ecosystem engineers globally. Some engineering fauna, 
such as plateau pikas (Ochotona spp.) and zokors (Eospalax spp.), are 
actively exterminated due to the perception that they compete with 
livestock for forage and that they degrade ecosystems through their 
soil disturbance (Fan et al., 1999; Zhang, Zhang, & Liu, 2003). This 
perception is thought to have originated from a spurious correlation 
between the densities of these rodents and grassland degradation 
(Smith, Zahler, & Hinds, 2006). It is now well established that over-
grazing was the main cause of the degradation, and the degraded 
state provided favourable conditions for pikas and zokors (Zhang 
et al., 2003). There is mounting evidence that plateau pikas facili-
tate nutrient cycling and grass productivity through burrowing, al-
though these effects are dependent on population density (Pang & 
Guo, 2017; Yu, Pang, Wang, Jin, & Shu, 2017). Given their important 
role in ecosystems, we would expect the loss of ecosystem engi-
neers such as pikas to have substantial consequences for ecosystem 
functioning (Fleming, Anderson, Prendergast, Bretz, & Valentine, 
2014). Reintroducing locally extinct engineers or introducing novel 
engineers may prove to be a viable strategy to manage degraded 
landscapes (Manning, Eldridge, & Jones, 2015).
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4.1 | Concluding remarks

There still remains much to be learned about the effects of soil dis-
turbance on ecosystems such as the roles of birds and reptiles, and 
whether the reintroduction of locally extinct engineers could help 
to restore ecosystem functions to states that were typical prior 
to anthropogenic change. While not all the effects would be con-
sidered facilitatory (e.g. biocrust abundance is reduced by distur-
bance), our study highlights the fact that vertebrate engineers play 
an important role in ecosystems, creating a mosaic of nutrient‐rich, 
highly productive patches. Given that engineers disturb 0.34–30% 
of the soil surface annually in areas where they are prevalent (Bragg, 
Donaldson, & Ryan, 2005; Hobbs & Mooney, 1985), and a single en-
gineering organism can displace up to 4.8 tonnes of soil per year 
(Garkaklis, Bradley, & Wooller, 2004), vertebrate disturbances are a 
major source of heterogeneity at fine spatial scales. Like other dis-
turbances such as fire, the environmental heterogeneity created by 
soil disturbance is a substantial driver of biodiversity at the land-
scape scale (Davidson & Lightfoot, 2008).
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