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ABSTRACT

Carbon abatement schemes that reduce land clearing and promote revegetation are now an important
component of climate change policy globally. There is considerable potential for these schemes to
operate in drylands which are spatially extensive. However, projects in these environments risk failure
through unplanned release of stored carbon to the atmosphere. In this review, we identify factors that
may adversely affect the success of vegetation-based carbon abatement projects in dryland ecosystems,
evaluate their likelihood of occurrence, and estimate the potential consequences for carbon storage and
sequestration. We also evaluate management strategies to reduce risks posed to these carbon abatement
projects. Identified risks were primarily disturbances, including unplanned fire, drought, and grazing.
Revegetation projects also risk recruitment failure, thereby failing to reach projected rates of seques-
tration. Many of these risks are dependent on rainfall, which is highly variable in drylands and sus-
ceptible to further variation under climate change. Resprouting vegetation is likely to be less vulnerable
to disturbance and have faster recovery rates upon release from disturbance. We conclude that there is a
strong impetus for identifying management strategies and risk reduction mechanisms for carbon
abatement projects. Risk mitigation would be enhanced by effective co-ordination of mitigation strate-
gies at scales larger than individual abatement project boundaries, and by implementing risk assessment
throughout project planning and implementation stages. Reduction of risk is vital for maximising carbon
sequestration of individual projects and for reducing barriers to the establishment of new projects
entering the market.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Market-based incentives to protect vegetation and revegetate
degraded landscapes are an important component of carbon
abatement policies around the world. For example, the UN's REDD+
programme now operates across 64 developing countries (UN,
2016), while Australia's Emissions Reduction Fund has established
AUDS$2.55 billion for abatement (Australian Government, 2014). In
addition to providing a mechanism for offsetting carbon emissions,
these projects offer a range of social and environmental co-benefits,
including diversified income streams for rural landholders, job
creation, improvements to biodiversity, reduced erosion and
nutrient runoff, concomitant improvements to water quality in
freshwater and marine environments, pollination services, live-
stock shelter, salinity control and increased amenity values
(Cunningham et al., 2015). However, these projects may also have
adverse impacts, for example forestry activities that impact on
water availability or biodiversity conservation, and limiting land
access for agricultural production (Australian Government, 2014).

For vegetation-based carbon abatement projects to succeed in
mitigating climate change, they must store carbon over an
extended time period, otherwise any benefits accrued may be lost.
However, there are a number of biophysical risks to maintaining
these long-term carbon stores, including fire, drought and heat
stress, grazing by livestock and wild herbivores, recruitment failure
after active regeneration, and changes in climate. These risks can
result in reduced rates of sequestration and the release of stored
carbon back to the atmosphere (Galik and Jackson, 2009). For
example, wildfires are estimated to reduce the annual terrestrial
carbon uptake by 0.32 Pg C yr!, which accounts for around 20% of
the total annual terrestrial carbon sink in a world without fire (Yue
et al., 2015). In 2003, drought and heatwaves in Europe were esti-
mated to reduce ecosystem gross primary productivity by 30% and
resulted in net carbon emissions of 0.5 Pg C yr! (Ciais et al., 2005).
These risks not only affect the environmental and economic value
of existing carbon abatement projects, but may also inhibit their
uptake by additional landholders, effectively reducing carbon
abatement potential. Thus, understanding potential risks to carbon
abatement projects is crucial to their success in mitigating climate
change.

Here, we undertake a review of risk factors for vegetation-based
carbon abatement initiatives, with a focus on Australian drylands.
Drylands are characterised by infrequent, highly variable rainfall,
and are defined as regions with an aridity index (which is the ratio
of mean annual precipitation to potential evapotranspiration)

below 0.65 (UNCCD, 2000). We focus on drylands because they
offer considerable opportunities for carbon sequestration due to
their extensive land area, covering around 30% of Earth's land
surface (Lal, 2004) and 70% of Australia (Fig. 1; Eamus et al., 2016).
In Australia, carbon projects that involve either avoided clearing of
vegetation or regeneration of previously cleared or degraded
vegetation are concentrated in drylands, with a large number of
projects under the Australian Emissions Reduction Fund located in
rural properties in the semi-arid region of western New South
Wales (Fig. 1). These initiatives offer opportunities to mitigate
climate change, rehabilitate degraded landscapes and drive eco-
nomic stability (Dean et al., 2012, 2015).

Assessment of the risks to carbon abatement projects requires
elucidation of both the likelihood and consequences of identified
risk factors for carbon storage and sequestration. In this review we
identify and examine each of the following risk factors: (i) un-
planned fire; (ii) drought and heat stress; (iii) grazing by livestock
and wild herbivores; (iv) factors leading to recruitment failure; and
(v) climate change. For each risk factor we evaluate the likelihood of
occurrence and the potential consequences for carbon storage and
sequestration. Finally, we (vi) identify management strategies and
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Fig. 1. Location of drylands in Australia, with a majority of carbon farming projects
under the Australian Emissions Reduction Fund located within the bioregions bounded

by the black polygon.
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risk reduction mechanisms that mitigate against these unplanned
risk factors.

2. Unplanned fire
2.1. Likelihood of fire occurrence

Fire is a major disturbance across many vegetation types glob-
ally. While fire is a natural process over large areas of the Australian
continent, it may hamper efforts to enhance sequestration of car-
bon. In drylands, primary production, and therefore fuel, is limited
by rainfall and there is often insufficient biomass or connectivity
between fuels for fire propagation (Turner et al., 2011). Fire
occurrence generally tracks periods of above-average rainfall when
there is an increase in plant growth; a process that drives increased
fuel loads and connectivity between fuels (Fig. 2a; Turner et al.,
2011). In drylands, rainfall is highly variable from year to year,
particularly in Australia (van Etten, 2009), hence the occurrence of
fire is also highly variable. For example, in mulga woodlands, which
cover 20—25% of the Australian continent and dominate arid and
semi-arid landscapes (Eamus et al., 2016), fire return intervals
range from 3 to 52 years (Ward et al., 2014).

Where carbon projects involve regeneration of vegetation, fuel
loads will increase over time, and this may have implications for the
intensity and rate of spread of fire across a landscape (Jenkins et al.,
2016). However, this is dependent on the matrix of fuel loads across
alandscape (Collins et al., 2015; Jenkins et al., 2016). For example, in
a catchment in eastern Australia vegetated with temperate Euca-
lyptus forests and woodland, Collins et al. (2015) found that simu-
lated increases in woody vegetation from environmental plantings
increased modelled fire sizes if there were low fuel loads (2 t ha™!)
across pastures in the catchment area. However, if fuel loads in
pastures were moderate (4.5 t ha~!) or high (7 t ha™!), there was
either little change in mean fire size, or else fire sizes declined in
response to environmental plantings. Similarly, Jenkins et al. (2016)
found that revegetation does not always increase rates of fire
spread across a landscape, because modelled flame heights were
sometimes higher in pastures than environmental plantings,
depending on the weather conditions. Thus, the risk of fire in car-
bon project areas is highly dependent upon the fuel loads and fuel
connectivity in the surrounding landscape, especially the fuel loads
of pastures.

If fuel loads are sufficient to propagate fire, there are still three
other factors, or “switches”, required for a fire to occur: (1) avail-
ability of fuel to burn, (2) fire weather, and (3) ignition (Bradstock,
2010). Fuels are available to burn when they are sufficiently low in

moisture content for fire ignition to occur. In arid and semi-arid
landscapes this pre-condition for fire is frequently met, as is the
pre-condition of fire weather, i.e. hot, dry and windy conditions
(Turner et al., 2011). Thus, the limiting pre-condition for fire in arid
and semi-arid environments is fuel load and fuel connectivity, in
contrast to temperate environments where fuel dryness and fire
weather are the key limiting factors for fire (Bradstock, 2010). The
final factor required for fire is ignition, and this usually occurs from
lightning during dry summer storms or anthropogenic sources
(Bradstock, 2010).

2.2. Consequences of unplanned fire for carbon storage

Terrestrial carbon stores are affected by fire in three main ways:
(1) carbon is emitted to the atmosphere by combustion during a
fire; (2) fire-killed plants slowly decompose and release carbon;
and (3) carbon accumulates following fire as the vegetation re-
generates (Williams et al., 2012). Fire may additionally indirectly
affect carbon stores by increasing the risk of erosion, which can
transport substantial amounts of soil organic carbon, depending on
the topography of the burnt area (Smith et al., 2011). Fire addi-
tionally affects soil carbon through effects on soil microbial com-
munities and nutrient cycling, with enhanced respiration often
observed due to soil heating (Munoz-Rojas et al., 2016).

2.2.1. Carbon emissions

Carbon emissions from fire, predominantly as carbon dioxide,
carbon monoxide and methane, occur both at the time of the fire
and over successive years, and vary according to vegetation type
(Sommers et al., 2014). Emissions from annual dry season fires in
mesic savannas, which are distributed across Australia's northern
drylands, have been estimated at 1.5—3 t C ha~! yr~! (Beringer
et al., 2007). To put this in context, net ecosystem productivity
(NEP) has been estimated as 3.5—5 t C ha~! yr—! (Beringer et al,,
2007). In higher productivity temperate eucalypt forests, where
fire return intervals are longer (typically in the order of decades),
carbon emissions from fire have been estimated at upwards of
11 t C ha~!, while NEP has been estimated at up to 6.7 t Cha—! yr~!
under conditions of average rainfall (Williams et al., 2012).

Following fire, carbon emissions continue as fire-killed plants
slowly decay. These emissions may be much higher than pyrogenic
emissions but occur over years to decades. For example, in western
US forests, carbon emissions from fire have been estimated at 4 Tg C
yr~! but the amount of biomass transferred from live to dead and
decomposing carbon pools by fire was estimated at 10.5 Tg C yr~!
(Ghimire et al., 2012). Overall carbon emissions are a function of
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Fig. 2. Conceptual models of the risk to carbon storage due to (a) fire; (b) drought and associated heat stress; and (c) grazing. The conceptual model for fire is modified from logistic
regression models of mortality due to fire from Catry et al. (2013); the conceptual model for drought is derived from curves of xylem vulnerability to cavitation (Mitchell et al., 2016;
Zeppel et al., 2015); and the conceptual model for grazing is derived from a meta-analysis of plant biomass responses to grazing in Australian rangelands (Eldridge et al., 2016).
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mortality rates, which generally increase as fire severity increases
(Fig. 2a; Williams et al., 2012). However, some species have low
mortality rates through their ability to resprout following distur-
bance, even after high severity fire resulting in complete defoliation
(Fig. 2a). Thus, the capacity of species to resprout following
disturbance is important in determining fire-driven mortality rates
and subsequent carbon emissions.

2.2.2. Post-fire carbon sequestration

Following fire, productivity declines due to loss of biomass, and
vegetation often changes from a net sink to a net source of carbon.
Rates of post-fire vegetation recovery, and hence recovery of carbon
stores, are dependent on the ecological responses to disturbance of
constituent species. Seedling germination may be triggered
through heat and chemical cues, opening serotinous seed capsules
(Noble and Slatyer, 1980). Resprouting species can recover rela-
tively quickly following fire in comparison to species regenerating
through seed (Bell and Pate, 1996). Thus, for resprouters, this
strategy may lead to a more rapid accumulation of carbon stores
than vegetation regenerating from seed (Fig. 3; Adams et al., 2012;
Nolan et al., 2015). Vegetation communities in the study area
include both obligate seeding (i.e. fire-killed, regenerate from seed)
and resprouting vegetation types. Callitris forests and woodlands
and mulga (Acacia) woodlands are killed by fire and regenerate via
seeds during high intensity fire (Cohn et al.,, 2011; Ward et al,,
2014), whereas Eucalyptus woodlands resprout following fire

Climate change
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+ |

(Clarke et al., 2015).

Rates of post-fire accumulation of carbon stores also depend on
seedling germination and survival. Successful recruitment of
seedlings is important even for resprouting vegetation types,
because there is often some post-fire mortality and seedling
germination in these species (Noble and Slatyer, 1980). If the in-
terval between fires is too short, some species may not have
reached reproductive maturity and will be abent from the seed-
bank. Conversely, if the interfire interval is too long, this may also
affect seed banks through a decline in fecundity with age. For
example, for Callitris verrucosa, maturation occurs at 10—15 years
and fecundity declines from c. 80 years (Bradstock and Cohn, 2002).
Thus, a fire return interval of less than 20—25 or greater than 80
years may lead to a decline in population numbers of this species. In
some species the seed bank can also be stored in soil, however for
arid environments high seed predation strongly limits the soil seed
bank of woody species (Wright and Clarke, 2009). Optimal fire-
return intervals are highly uncertain for many vegetation com-
munities in Australia's drylands (Noble, 1984), this may be due in
part to the infrequent, irregular nature of fire in these
environments.

3. Drought and heat stress

Drought and heat stress can occur independently and both can
affect rates of carbon sequestration. However, these two risk factors
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often co-occur (Kiem et al., 2016). Given the close coupling of these
two risk factors, we discuss their effects on carbon storage and
sequestration together.

3.1. Likelihood of drought and heat stress

Precipitation in Australia is influenced by four major climate
drivers: the El Nino-Southern Oscillation in the Pacific Ocean; Pa-
cific Decadal Oscillation; Indian Ocean dipole; and Southern
Annular Mode in the Southern Ocean (Kiem et al., 2016). Individ-
ually, each system is associated with cycles of drought or flood, but
these systems can also interact with each other. For example,
drought in 2009 and an exceptional rainfall year of 2011 have been
linked to interactions between these climate systems (Cleverly
et al., 2016). Although there is increasing understanding of the
mechanisms causing drought in Australia, e.g. changes in sea-
surface temperatures and pressure anomalies, there is currently
limited ability to forecast when a drought will occur or how long it
will last. This is partly due to the complex interactions among
climate drivers, and difficulties in defining and monitoring drought
due to the variety of temporal and spatial scales over which
drought occurs (Kiem et al., 2016). Heatwaves are also difficult to
forecast. Higher temperatures are often associated with drought,
but the cause of this is not straightforward. Drought increases the
likelihood of lower cloud cover and actual evapotranspiration,
which lowers evaporative cooling and, as a result, increases plant
temperatures. Conversely, higher temperatures may increase the
probability of drought by increasing potential evapotranspiration
(Kiem et al., 2016).

3.2. Consequences of drought and heat stress for carbon storage
and sequestration

Even though arid and semi-arid vegetation is adapted to low
rainfall, these communities still respond to cycles of wet and dry.
For example, the largest recorded global land carbon sink of 4.1 Pg C
yr~! occurred during the wet year of 2011. In comparison, the
average land carbon sink is 2.6 Pg C yr~!, with over half of this
increase attributed to exceptional precipitation, and subsequent
productivity, across Australia's semi-arid regions (Poulter et al.,
2014). However, this increase in the carbon sink across semi-arid
regions of Australia was transient, with productivity rapidly
diminishing in the following years (Ma et al., 2016).

Dryland plants typically exhibit a range of strategies for sur-
viving under low rainfall. Some plants avoid aridity by accessing
groundwater, usually through deep roots (Nolan et al., 2017a),
while others may have numerous morphological and physiological
adaptations to survive under conditions of low soil water avail-
ability (McDowell et al., 2008). Plants can respond to drought via a
number of morphological and physiological mechanisms. This in-
cludes shedding leaves and closing stomata, resulting in reduced
rates of transpiration, and hence photosynthesis (Tardieu and
Simonneau, 1998; Nolan et al., 2017b). Prolonged drought can
lead to enhanced rates of mortality and subsequent carbon emis-
sions (Fig. 2b). While mortality is correlated with drought severity,
mortality rates can be affected by interacting factors, such as insect
infestation, which often co-incide with drought (Anderegg et al.,
2015).

The effects of drought on carbon storage and sequestration de-
pends on how different plants respond to disturbance. For
resprouting species, mortality may be delayed compared to non-
resprouting species (Fig. 2b; Zeppel et al, 2015). Further,
ecosystem recovery is likely to be more rapid following release
from drought, due to the rapid recovery of foliage in resprouting
plants (Fig. 3; Zeppel et al., 2015). Thus, the impacts of drought on

carbon stores are likely to be lower in vegetation dominated by
resprouting species.

4. Grazing by domestic and wild herbivores

Domestic livestock in Australian drylands include sheep (Ovies
aries), cattle (Bos taurus, Bos indicus), and goats (Capra hircus) (Dean
etal., 2015), with goats and cattle also occurring as wild herbivores.
Other common wild herbivores include kangaroos (Macropus spp.),
rabbits (Oryctolagus cuniculus), feral horses (Equus caballus), feral
donkeys (Equus asinus), camels (Camelus dromedaries), and deer
(Cervus spp., Axis spp.) (Eldridge et al., 2016). Invertebrates can also
contribute to grazing (Chapman et al., 2003), but are not explicitly
considered here.

4.1. Factors influencing grazing pressure

Herbivore density is limited by available resources, particularly
rainfall, and therefore soil moisture, which drives primary pro-
ductivity. For example, annual wool production (measured as kg/
head/year) is correlated with mean annual rainfall which affects the
quality and availability of forage (Freudenberger et al., 1999).
Similarly, kangaroo densities are known to fluctuate widely in
relation to mean annual rainfall (Letnic and Crowther, 2013). The
distribution of domestic and wild herbivores is often driven by the
availability of watering points (Fensham and Fairfax, 2008), though
kangaroos are not strongly water-focused (Montague-Drake and
Croft, 2004). The density of large herbivores may also be moder-
ated by the presence of predators such as dingoes (Canis dingo)
(Johnson and Wallach, 2016; Letnic and Crowther, 2013), although
most livestock susceptible to predation by dingoes are protected by
dingo-proof fencing.

4.2. Consequences of grazing for carbon storage and sequestration

The effects of grazing on carbon storage and sequestration vary
with species, grazing intensity, and climate (Conant et al., 2017;
Eldridge et al., 2016). In a review of 217 studies on the effects of
grazing in Australian drylands, Eldridge et al. (2016) found that
livestock grazing generally reduced above-ground biomass, by 40%
on average; with larger effects in drier environments. Eldridge et al.
(2016) also found that increasing livestock density resulted in
larger reductions in biomass (Fig. 2c); with cattle having greater
effects on biomass than sheep, but synergistic effects when both
grazed together. Goats also have larger effects on biomass than
sheep, and at high stocking rates goats can cause widespread shrub
mortality (Harrington, 1979). In contrast to above-ground biomass,
the effect of livestock grazing on below-ground biomass is variable.
In a global review of grazing effects across 276 sites across a range
of climate zones, Milchunas and Lauenroth (1993) found that
although livestock grazing generally reduced above-ground
biomass, both increases and reductions in root biomass and soil
organic carbon were observed with grazing. Increased allocation to
root biomass allows for faster recovery of photosynthetic material
lost to grazing, but is likely constrained by nutrient and water
availability (Milchunas and Lauenroth, 1993). The relationship be-
tween increasing grazing intensity and soil carbon is, however,
complex, with declines in carbon at low and high grazing contrasts,
but neutral effects under moderate grazing (Allen et al., 2013;
Eldridge et al., 2017; Maestre et al., 2016). Grazing can also affect
soil organic carbon storage by increasing the risk of erosion
(Eldridge et al., 2016, 2017); through additions of animal excreta,
which may enrich soil organic carbon (Hunt et al., 2016); or through
livestock carbon emissions (Dean et al., 2012).

There are some exceptions to the trend of declining above-
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ground biomass with increasing livestock grazing. Notably, shrub
encroachment, or “woody thickening”, has been observed across
drylands globally and is due to a combination of factors, including
grazing (van Auken, 2009). Livestock grazing can reduce grassy and
herbaceous biomass, thereby reducing competition and fire fre-
quency, which favours woody species (van Auken, 2009). Shrub
encroachment may also be due to increases in CO; and N deposi-
tion, although these are likely to be less important than grazing
(van Auken, 2009). Shrub encroachment is likely to increase rates of
carbon sequestration across drylands (Daryanto et al, 2013;
Eldridge and Soliveres, 2014). Effects of grazing on woody
encroachment are likely to be the legacy effects of historic over-
grazing up to a century ago.

There has been less research on the effects of grazing by wild
herbivores on carbon sequestration, than effects by domestic her-
bivores. Many studies on the effects of livestock grazing on biomass
also include wild grazers, thus potentially confounding any effects
of wild grazers from those of livestock (Eldridge et al., 2016).
However, domestic livestock and wild grazers have differing di-
etary preferences (Dawson and Ellis, 1994, 1996) and may therefore
differ in their effects on carbon sequestration. In general, macro-
pods (e.g. kangaroos and wallabies) eat more grasses and less
woody plants than sheep (Dawson and Ellis, 1994), and so are un-
likely to have similar effects on above-ground biomass. Similarly,
goats eat more woody biomass than macropods (Dawson and Ellis,
1996). Compared to domestic livestock, sites grazed by macropods
and rabbits tend to have a greater vegetation cover and abundance
of perennial vegetation (Fensham and Skull, 1999). Indeed, recent
research on grazing effects by different herbivores in the semi-arid
woodlands of eastern Australia has shown that kangaroos had no
effects on plant community composition (Travers et al., 2017). The
effects of wild herbivores on carbon sequestration will therefore
likely differ from those of European livestock. The effects will vary
depending on the species of wild herbivore. Grazing can also affect
other aspects of ecosystem functioning which then influences rates
of carbon sequestration. For example, kangaroos have been shown
to be important local recyclers of energy (lles et al., 2010), a process
that may influence sequestration rates. Current knowledge of the
importance of these types of functions is poor.

5. Recruitment failure

For carbon abatement projects that involve revegetation or
regeneration, projects may fail to realise maximum potential rates
of carbon sequestration if plants fail to germinate or establish. An
exception to this is for projects that involve direct planting of
seedlings, though these projects are still vulnerable to failure in
seedling establishment. Here we discuss factors that may limit or
prevent successful revegetation or regeneration.

5.1. Presence of a seedbank

Regeneration and natural revegetation projects require the
presence of a viable seed bank. Seed production in drylands typi-
cally occurs in pulses in response to above-average rainfall. For
example, seed masting, the production of large seed crops, occurs
in mulga, a group of 12 closely related Acacia species which cover
20% of continental Australia (Preece, 1971). Masting in mulga usu-
ally only occurs following above-average rainfall both in summer
and the following winter (Preece, 1971). Irrespective of seed pro-
duction strategy, seed storage in the soils of Australian drylands is
limited due to high rates of predation, often by ants (Wright and
Clarke, 2009). Some species, such as Eucalyptus spp. can avoid
predation by storing seeds in canopy (serotinous) seedbanks
(Wellington and Noble, 1985). Given the short residence time for

seeds in soils, there is unlikely to be a high diversity of seeds stored
in soils that have been managed for agricultural production, and
emerging seedlings may face substantial competition from herba-
ceous species (Semple and Koen, 2006). The exception to this are
short-lived herbaceous flora, which can dominate soil seed banks
over woody species in arid areas (Wright and Clarke, 2009). Thus,
successful natural regeneration of agricultural land, particularly of
woody species, will depend in large part on proximity to a seed
source, such as remnant vegetation or scattered trees.

5.2. Germination and establishment

Recruitment depends on the presence of seeds and successful
germination. In many species germination may be delayed until the
occurrence of an abiotic trigger, such as above-average rainfall or
fire. For example, in serotinous species such as mallee and Callitris,
seed release is triggered by fire (Bradstock and Cohn, 2002;
Wellington and Noble, 1985); while mulga requires high severity
fire, or temperatures exceeding 80 °C, for substantial rates of
germination to occur (Wright et al., 2016). In drylands, the timing
and amount of rainfall is also important for seed germination,
emergence and seedling survival (Cohn and Bradstock, 2000;
Fehmi et al., 2014). For species with fire-triggered germination,
soil moisture conditions are often ideal for germination because fire
generally follows above-average rainfall. Given that rainfall in
drylands is highly variable (van Etten, 2009), germination rates and
seedling mortality are likely to vary substantially across years.

5.3. Competition

Competition also has important implications for revegetation
success and carbon sequestration. In younger revegetation projects,
competition can increase mortality rates of some species (Rinella
et al., 2015). Woody species may be particularly vulnerable to this
competition because they are under-represented in soil seed banks
compared with herbaceous or grassy species (Rinella et al., 2015),
and the survival rate of woody species often declines with
increasing grassy biomass (Hild et al., 2006). However, this has not
been tested in Australian semi-arid landscapes. Competition could
thus have important consequences for long-term rates of carbon
sequestration if trees and shrubs are out-competed by grassy or
herbaceous species during the initial stages of revegetation.

If woody species dominate in natural regeneration projects, they
may form dense stands of regrowth. This can be common where
revegetation occurs on former agricultural soil located close to
remnant woodlands or forests. For example, in western New South
Wales (Fig. 1), Callitris glaucophylla often regenerates on previously
cleared land, forming mono-specific stands with stem densities
exceeding 1500 stems ha~! (McHenry et al., 2006). Increased
densities of woody stems could enhance total carbon storage in the
overstorey, but above-ground carbon is greater in systems with a
few large trees than those with many small-stemmed trees of low
basal area (Eldridge and Wilson, 2003). High density patches may
be associated with reduced carbon sequestration over long time
scales (Dwyer et al., 2010). This is because high density stands
typically have slower rates of overstorey biomass accumulation and
reduced understorey biomass due to competition for resources
(Dwyer et al., 2010; McHenry et al., 2006).

6. Climate change

Climate change projections for Australia are for higher tem-
peratures, altered rainfall patterns, and increases in extreme events
such as heatwaves (IPCC, 2014). Over the next 50 years, western
New South Wales (Fig. 1) is likely to see temperature increases of
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2—3 °C and higher mean annual rainfall, particularly in the wetter,
summer months, with lower rainfall possible in the drier, spring
months (Olson et al., 2016). Rainfall intensity is also likely to in-
crease (Westra et al., 2014). Here, we discuss how these climatic
changes may affect the identified risk factors for carbon projects.

6.1. Potential consequences of climate change

The consequences of climate change for carbon sequestration in
drylands is highly uncertain, owing to the complex interactions
among rainfall, temperature, fire, drought, heat stress, and grazing
in these environments (Maestre et al., 2016). Given that produc-
tivity in drylands is limited by water availability, increases in mean
annual rainfall may increase productivity. Additionally, increased
atmospheric CO2 may lead to a “fertilisation effect” that also in-
creases productivity (Fig. 3; Donohue et al., 2013). However, co-
occurring increases in temperature are likely to moderate or
reverse any gains in productivity due to higher rates of potential
evapotranspiration, and therefore lower soil moisture (Bates et al.,
2008). Additionally, productivity declines during heatwaves (van
Gorsel et al., 2016). Further, recent research indicates that the CO,
fertilisation effect may not be realised in phosphorus-limited
vegetation, which is common across Australia (Ellsworth et al.,
2017).

Changing climate will also indirectly affect carbon sequestration
through disturbance and increased probability of wind and water
erosion. Increased summer rainfall, if it is sufficient to promote an
increase in the growth of ephemeral plants, will increase the risk of
unplanned fire. However, there is large uncertainty around future
projections of fuel loads in semi-arid regions (Clarke et al., 2016).
Given that climate change is projected to affect the seasonality of
rainfall, there may be an increase in the frequency of drought
events. Apart from the direct effects of drought and heat stress on
productivity (Section 3), drought can also indirectly affect carbon
sequestration by increasing the vulnerability to disease and insect
infestation (Carnicer et al., 2011); and may reduce resistance to
erosion (Dean et al., 2012).

7. Relative importance of identified biophysical risks to
carbon abatement projects

The risk factors discussed here can largely be classified as dis-
turbances, i.e. fire, drought and heat stress, and grazing. These
disturbances affect carbon abatement projects through emissions
of stored carbon (Fig. 2) and altered rates of net ecosystem pro-
ductivity as vegetation recovers following disturbance (Fig. 3).
Rates of carbon emissions increase with mortality rates and
biomass losses, which in turn are a function of disturbance severity
(which incorporates both disturbance intensity and duration;
Fig. 2). Mortality rates or biomass loss does not respond linearly to
increased disturbance severity, and differs among disturbance
types and between resprouting or non-resprouting vegetation
types. Specifically, potential carbon emissions are much higher
following fire and drought than following grazing, with lower
mortality rates, and hence lower carbon emissions, in resprouting
compared to non-resprouting vegetation types. It is important to
note that disturbances may not always result in reduced seques-
tration over longer time-frames. For example, fire is necessary for
the germination, and hence local persistence, of many plant spe-
cies. Further, the effects of wild herbivore grazing on carbon
sequestration are uncertain, and will likely depend largely on in-
teractions with other disturbances.

Rates of net ecosystem productivity are affected by distur-
bances, in addition to natural climate variability, the occurrence of
recruitment events, particularly for revegetation or regeneration

projects, and climate change (Fig. 3). Following disturbance, rates of
net ecosystem productivity recovery towards pre-disturbance
values are faster if overall biomass losses were smaller, i.e. for a
lower severity disturbance or for resprouting vegetation types. The
effects of climate change on net ecosystem productivity in Aus-
tralia's drylands is highly uncertain, but is likely to affect the
occurrence and severity of disturbance events, and may increase
overall rates of NEP through CO, fertilisation, as discussed in sec-
tion 6.1.

8. Management strategies and risk reduction mechanisms

Opportunities to reduce risks to carbon storage and sequestra-
tion can involve management strategies before, during, and after
event-based risks such as fire, drought and heat stress. Here, we
identify management strategies and risk reduction mechanisms for
carbon abatement projects.

8.1. Unplanned fire

8.1.1. Fuel loads

Given that fuel loads are the key pre-condition for fire occur-
rence in drylands, any actions to reduce the risk of fire to carbon
stores should focus on fuel load reduction. Management of fuel
loads will be most effective following above-average rainfall when
fuel loads are high. However, the efficacy of fuel reduction reduces
over time. For example, in temperate and Mediterranean forested
landscapes, prescribed burning has been shown to be most effec-
tive in reducing the fire hazard during the first 2—5 years after
treatment (Holsinger et al., 2016). Given the narrow window where
prescribed burning can reduce fire spread, it is likely that most fuels
would have recovered prior to any subsequent wildfire in drylands,
which can have long fire-return intervals, unless prescribed
burning occurred regularly. Indeed, Price et al. (2015) found that
the effect of prescribed burning on fire activity across bioregions in
south-eastern Australia declined with increasing aridity and fire-
return intervals. Fuel reduction within pastures may be highly
effective at reducing fire risk across a landscape. The rate of spread
of fire is typically much faster in grasslands than in forests (Collins
et al., 2015). Pasture fuel loads can be reduced through manage-
ment actions such as mowing or livestock grazing (Davies et al.,
2016).

Activities to reduce fuel loads will necessarily reduce carbon
storage. This reduction may be offset by reductions in carbon
emissions from wildfires, in which case there is an argument that
carbon projects should not be penalised for reducing fuel loads.
However, research to date suggests that carbon lost from repeated
prescribed burning is not necessarily offset by reduced carbon
emissions from subsequent wildfires. For example, in dry forests of
the Western U.S., prescribed fire or thinning did not affect subse-
quent wildfire severity, although combining both treatments did
(Kalies and Kent, 2016). This suggests that these cumulative carbon
losses from prescribed fire are unlikely to be offset by reduced
carbon losses from wildfire.

8.1.2. Fire suppression

Fire suppression activities are most likely to be more effective in
containing small, low intensity fires where land managers need
fewer resources and can act more quickly. Suppression resources
include personal protective equipment, fire-fighting equipment,
and access to water, which require adequate preparation prior to
wildfire occurrence. Preparation also includes, but is not limited to,
well-maintained fire breaks, preparation of a written fire plan,
consideration of the capacity to defend assets from fire (which
includes personal capacity as well as equipment availability and
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condition of the grounds), and the availability of a safe place to seek
shelter (Penman et al., 2013).

8.2. Mortality and recovery following disturbance

While it may not be possible to prevent high intensity fires, and
it is not possible to prevent drought and associated heat stress
events, there are management strategies that may potentially
mitigate the effects of these disturbances on carbon stores.
Following disturbance, grazing may cause mortality of regenerating
shrubs or seedlings, thereby affecting the recovery of net primary
productivity, but the evidence for this is mixed. For example,
grazing exclusion can enhance post-drought recovery of semi-arid
shrubs (DeMalach et al., 2014) while low intensity grazing can
enhance the growth rate of woody seedlings by reducing compe-
tition from co-occurring grassy species (de Villalobos and Pelaez,
2015). However, grazing did not alter the capacity of the arid
zone chenopod shrub Atriplex vesicaria to recover from drought in
arid Australia, compared with ungrazed shrubs (Eldridge et al.,
1990). Importantly, there is currently no evidence that grazing
exclusion reduces drought-induced mortality of trees in Eucalypt
woodlands (Fensham, 1998). Given the mixed evidence of the effect
of grazing exclusion on mortality and seedling recruitment, it is
currently uncertain whether management strategies related to
livestock and wild herbivore densities would prevent carbon losses
due to mortality and enhance recruitment following drought.

Thinning may be another useful mitigation action to reduce the
risk of drought-induced tree mortality, because thinning typically
reduces stand-level transpiration and can therefore enhance soil
moisture content (Whitehead et al., 1984). Given this, thinning may
potentially mitigate drought stress, and thus enhance productivity
in surviving trees. Indeed, this has been demonstrated across a
range of forests and woodlands (Sohn et al., 2016). However, to date
there has been no research on whether the carbon lost from thin-
ning is offset by enhanced productivity and reduced mortality in
surviving trees.

8.3. Grazing by domestic and wild herbivores

Approaches to managing domestic herbivores can broadly be
characterised as either 1) low intensity grazing, which aims to
minimise impacts on preferred plant species; or 2) short-term, high
intensity grazing, which forces livestock to use the entire paddock
(Fynn et al., 2017). Both approaches are typically based on some
form of livestock rotation among paddocks (Hawkins et al., 2017).
Wild herbivores also contribute to total grazing pressure, and can
be managed by fencing, culling or preventing access to water.
Removal of watering points may reduce densities of wild herbi-
vores, such as goats, but this may not be feasible in a commercial
grazing operation. Other alternative strategies, such as predator-
friendly farming involving the protection of apex predators such
as dingoes, may also reduce the density of wild herbivores, though
this has not been widely tested in Australia (Johnson and Wallach,
2016). Overall, the effects of differing management strategies on
plant productivity and therefore soil organic carbon, will likely
differ across climate gradients, and soil and vegetation types (Fynn
et al,, 2017; Hawkins et al., 2017). Insufficient grazing may result in
increased herbaceous biomass (Dean et al., 2012), increasing the
risk of unplanned fire and preventing the recruitment of woody
species through competitive interactions.

8.4. Recruitment failure

Mitigation of risks specific to regeneration or revegetation
projects can be undertaken both during the planning and at later

stages of a project. At the planning stage, selection of sites that are
close to existing vegetation or scattered trees, will increase op-
portunities for recruitment of woody species. Other aspects of
project design, such as size and productivity of the site, are also
important for determining rates of carbon sequestration
(Cunningham et al.,, 2015). The germination and establishment
phases of natural regeneration projects are perhaps associated with
the highest risk, because these processes are dependent on rainfall,
which is unpredictable across drylands (Fehmi et al., 2014). Adding
mulch to soil may mitigate the effects of irregular rainfall on
germination and establishment to some extent (Beggy and Fehmi,
2016). However, irrigation is unlikely to achieve desired outcomes
because of the long duration that is often required and the risk of
high mortality when irrigation is removed (Fehmi et al., 2014). At
the germination stage, an additional risk factor is the absence of
fire, which may be required to break seed dormancy for some
species (Wright et al., 2016). This may be overcome by pre-treating
seeds in direct seeding projects, or planting seedlings. Thinning
may be beneficial at later growth stages if there is a high density of
woody regrowth, though thinning does not always result in greater
rates of carbon sequestration (Dwyer et al., 2010; McHenry et al.,
2006).

8.5. Climate change

At the paddock scale, species composition is likely to be
important in determining responses of carbon storage and accu-
mulation to climate change. In particular, greater plant species di-
versity and an herbaceous layer dominated by perennial species,
rather than annuals, can enhance resistance and resilience to
disturbance (McCann, 2000). Diversity in plant functional traits and
genetic diversity within species is also likely to be important for
ecosystem resilience to climate change (Millar et al., 2007). Thus, a
key mitigation action for revegetation type carbon projects is to
design projects with high diversity in terms of species composition,
functional traits, and within-species genetics. At landscape and
regional scales, dryland resilience to climate change may be
enhanced by improving connectivity between vegetation patches
to enable species movement and gene flow (Millar et al., 2007).
Carbon projects offer an important mechanism to facilitate con-
nectivity across large spatial scales, and thus may be critically
important in enhancing ecosystem resilience to climate change in
highly fragmented landscapes.

9. Conclusions

We have identified a number of biophysical risks to carbon
storage in above-ground biomass. At short time scales, distur-
bances can cause net carbon emissions, but this carbon can
potentially be re-sequestered as biomass recovers following
disturbance. This highlights the importance of considering carbon
abatement potential of vegetation over multi-decadal time-frames.
However, there is still considerable uncertainty around the time
taken for carbon emitted from disturbances to be re-sequestered in
regenerating vegetation for a large number of dryland vegetation
types globally. Further, disturbances such as drought and fire are
projected to increase under climate change, and the effects of
increasing disturbance frequency on NEP trajectories are also
uncertain.

We have identified a number of potential management strate-
gies that may reduce the effects of biophysical risks to vegetation in
carbon abatement projects. The risks discussed here will almost
always operate at spatial scales larger than that defined by an in-
dividual project, which is often a paddock. Thus, effective risk
management will be aided by co-ordination of management at
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landscape and regional scales. Given that these carbon abatement
projects are a relatively new enterprise, there is an opportunity to
elucidate and account for risk in the design of existing and future
carbon projects. Specifically, a risk assessment framework that can
be applied to individual projects would aid in optimising carbon
sequestration potential, although there are a number of risks
associated with knowledge uptake (Prober et al., 2017). Addition-
ally, an assessment of risks could underpin market mechanisms to
mitigate risk, for example through insurance products. This would
in turn reduce barriers to landholders entering the market.
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