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ABSTRACT

Global change is expected to reduce the provision of multiple ecosystem services in drylands, the largest biome on Earth. Understanding the
relative importance of climate change and overgrazing on ecosystems services is critical for predicting the effects of global change on eco-
system well-being. We generated a system-level understanding of the effects of climate (aridity intensity) and land use intensification (her-
bivore grazing intensity) on four regulating ecosystem services (C-storage, N-availability and P-availability, and organic matter
decomposition) and one provisioning service (plant production) in wooded drylands from eastern Australia. Climate change and grazing in-
tensity had different effects on multiple ecosystem services. Increasing aridity from 0-19 (dry subhumid) to 0-63 (arid) had consistent sup-
pressive effects on C-storage, N-availability, decomposition and plant biomass services, but not on P-availability. The magnitude of these
suppressive effects was greater than any effects due to grazing. All sites showed evidence of kangaroo grazing, but the heaviest grazing
was due to cattle (dung: range 0-4545 kg ha™'; mean 142 kg ha™"). Any effects of grazing on ecosystem services were herbivore specific
and ranged from positive to neutral or negative. Sheep, and to a lesser extent cattle, were associated with greater N-availability. Rabbits, how-
ever, had a greater effect on P-availability than aridity. Our study suggests that increases in livestock grazing may fail to sustain ecosystem
services because of the generally stronger negative effect of increasing aridity on most ecosystem services in our model dryland. These ser-
vices are likely therefore to decline with global increases in aridity. Copyright © 2017 John Wiley & Sons, Ltd.
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INTRODUCTION Simberloff, 2003). Over the past three centuries, the total
global area of land dedicated to grazing has increased more
than sixfold, from 524 to 3451 million hectares, largely as a
result of population growth and colonisation (Goldewijk,
2001, 2005). Consequently, almost a quarter of the global
terrestrial land mass is now under grazing by domestic live-
stock (Asner et al., 2004). About 60% of land dedicated to
grazing is considered drylands, where evapotranspiration
exceeds rainfall (Maestre et al., 2012; Pravilie, 2016) and
where the effects of human-induced changes such as
overgrazing are likely to have the largest effect on the provi-
sion of ecosystem services (Eldridge & Delgado-Baquerizo,
2016). Carbon storage and N-availability in plant biomass
and forage supply may be greatest in moderately grazed dry-
lands (Oiiatibia et al., 2015). However, overgrazing reduces
vegetation cover and biomass (Jones, 2000), leading to a de-
cline in the spatial heterogeneity of litter cover (Daryanto
et al.,, 2013b). Reduced litter cover can lead to reduced de-
composition and therefore smaller pools of soil C and N.
The effects of overgrazing on ecosystem functions and
services may differ, however, across different climatic con-

One of the terrestrial systems most at risk of environmental
degradation is drylands, which occupy about 45% of Earth’s
land mass (Pravilie, 2016) and support about 38% of its
people (Reynolds et al., 2007). Drylands occur dispropor-
tionately in developing countries (Pravilie, 2016), are agri-
culturally marginal and support many socially
disadvantaged groups that rely heavily on grazing and farm-
ing for their livelihoods (Powell et al., 2004). Two of the
most important drivers of ecosystem function in drylands
are overgrazing and increased aridity (Maestre et al.,
2016). Understanding the roles of land use intensification
(overgrazing) and climate change (increasing aridity) is of
paramount importance if we are up to predict how ecosys-
tem services might change in the face of a well-being.
Overgrazing by livestock is emerging as one of the
greatest threats to global biodiversity conservation and eco-
system sustainability (Fleischner, 1994; Viazquez &
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ditions. For example, Rabbi et al. (2015) found that land
management did not influence the capacity of Australian
drylands to soil carbon storage, a key ecosystem service,
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owing to the strong limitations in water availability, the
main limiting factor in these ecosystems. Because of this,
the effect of overgrazing cannot be evaluated in isolation
and needs to consider the relative effects of multiple envi-
ronmental factors, which are likely to influence how ecosys-
tem services respond to changing land use intensity. This
has not been widely reported in current literature.

The second driver, aridity, has negative effects on a large
number of ecosystem functions and services via multiple
pathways. Increased aridity reduces the diversity and abun-
dance of soil microbial communities that carry out multiple
soil functions (Maestre et al, 2012, 2015; Delgado-
Baquerizo et al, 2016b), reduces C-storage and N-
availability by suppressing plant production and therefore
nutrient inputs into the soil and alters the concentration of
some soil enzymes, which control nutrient production pro-
cesses (Li & Sarah, 2003; Delgado-Baquerizo et al.,
2013a, 2013b). However, the suppressive effect of aridity
on ecosystem functions and services is highly dependent
on the specific service. Increasing aridity, for example, has
been shown to enhance soil P, largely by increasing the ex-
posure of P-rich parent material and enhancing the amount
of P bound to soil carbonates, which are abundant under
the most arid conditions (Delgado-Baquerizo et al,
2013b). This may also have feedback effects on plant com-
munity composition by promoting plants that can grow in
soil with lower N:P ratios (Giisewell & Bollens, 2003),
thereby reducing ecosystem resilience. Single functions,
therefore, should not be seen in isolation because overall
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ecosystem functioning will depend on a range of functions
or services operating together (multifunctionality sensu
Gamfeldt et al., 2008). In drylands, resilience of ecosystems
to ongoing global environmental change such as increased
aridity and/or drought is enhanced by increasing plant taxo-
nomic and functional diversity and woody plant cover
(Gaitan et al.,, 2014; Valencia et al., 2015), or by maintain-
ing a diverse and abundant soil microbial community
(Maestre et al., 2015). The maintenance of high levels of di-
versity in drylands is critical in order to maximise the provi-
sion of a range of ecosystem services on which a range of
biota, including humans, depend (Naidoo et al., 2008;
Bellard et al., 2012).

We know relatively little about the relative strengths of
the two main drivers, grazing and aridity, on ecosystem ser-
vices in drylands (although see Ibafiez et al, 2014 for a
modelling approach). This lack of knowledge hampers our
capacity to manage change in drylands (e.g. Pravilie,
2016) or to determine the interactive effects of continued
grazing at current levels under a regime of reduced rainfall.
We developed an a priori model, based upon the known re-
lationships among the various predictor and response vari-
ables (Figure la; Table I), and included in our model
woody plant cover and soil health. Soil health was included
because it is an essential component of human and environ-
mental well-being (Pankhurst ef al., 1997). It is also particu-
larly important in drylands because the soils tend to be
shallow and low in available nutrients and are often sparsely
vegetated and susceptible to wind and water erosion. Both
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Figure 1. Structural equation models for (a) the a priori model and (b—f) five ecosystem services. Grazing is a composite variable comprising recent grazing by

all herbivores, and historic grazing by livestock. Standardised path coefficients, embedded within the arrows, are analogous to partial correlation coefficients,

and indicate the effect size of the relationship. Continuous and dashed arrows indicate posmve and negative relationships, respectively. The width of arrows is

proportional to the strength of path coefﬁments The proportion of variance explamed (R ) is shown in each figure. Only significant pathways are shown in the
models. Model fit: )( =848,d.f. =9, p=0-49. p 0-09; p 0-10. [Colour figure can be viewed at wileyonlinelibrary.com]
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Table I. Hypothesised mechanisms underlying the grazing a priori meta-model shown in Figure la

Path

Hypothesised mechanism

1
2

(—) Increasing aridity reduces woody cover in semi-arid landscapes (Westerband et al., 2015).

(+/—) Ecosystem multifunctionality peaks at 41-60% of relative woody covers (RWC), but aridity alters the effect of RWC on
multifunctionality. The RWC-multifunctionality relationship was linear positive in dry-subhumid sites, but it shifted into hump
shaped and ended a negative relationship in most arid conditions (Soliveres et al., 2014).

(—) Aridity has negative effects on ecosystem multifunctions or services (Maestre et al., 2012; Delgado-Baquerizo et al., 2016a),
because it reduces soil microbial diversity and abundance that promote ecosystem multifunctions (Maestre ef al., 2015; Delgado-
Baquerizo et al., 2016b) and it reduces organic C, total N and enzyme activities such as phosphatase activity (Li & Sarah, 2003;
Delgado-Baquerizo et al., 2013a, 2013b); (+) but aridity increases total P (Delgado-Baquerizo et al., 2013b).

(—) Grazing has significant negative impact on overall ecosystem multifunction and multiservices (Zhang et al., 2016) by dampening
positive effect of shrubs (Eldridge ef al., 2013, 2015). It reduces plant biomass and litter cover (Eldridge ef al., 2016a, 2016b), and
therefore soil organic C (Daryanto et al., 2013a), and increases bare soil (Daryanto et al., 2012). (+/—) Under high intensity of grazing
microbial biomass-C, phosphatase and dehydrogenase activities increase owing to herbivore urine and dung at intercanopy but
reduces B-glucosidase activity, organic C and total N at under plant canopy soil (Prieto et al., 2011; Olivera et al., 2014).

(—) Soil organisms, one of the soil health indicators, are very sensitive to climate (Doran & Zeiss, 2000); negative correlation between
aridity and plant cover may enable soil erosion (Delgado-Baquerizo et al., 2013b).

(—) High stocking rate increases soil compaction and bulk density (Pulido et al., 2016), and therefore reduces infiltration and
macroporosity (Castellano & Valone, 2007; du Toit ez al., 2009), as well as nutrients and stability indices (Eldridge et al., 2013).
(+) Healthy soils with higher plant, litter and crust cover will increase organic inputs into soil, which support diverse microbial

community and enrich the soil nutrient pool, will promote overall ecosystem functions.

woody cover and soil health have been shown to mediate
the effects of both aridity and grazing on the provision of
ecosystem services and functions (e.g. Maestre et al.,
2016). We predicted that increasing aridity (path 3) would
have negative effects on ecosystem functions associated
with C-storage, N-availability and plant production
(Maestre et al., 2012, 2016; Zhang et al., 2016; Delgado-
Baquerizo et al., 2016a), but that P-availability would be
advantaged by increased aridity due to the re-distribution
of P-rich sediments resulting from increased degradation
(Delgado-Baquerizo et al., 2013b; hypothesis 1). Second,
we expected to detect substantial herbivore-specific effects
on services and functions (path 4). Specifically, kangaroos
(i.e. native species) were predicted to have few effects on
functions and services because they have different grazing
patterns from livestock and have coevolved with plants
and soils (hypothesis 2). Conversely, we expected to detect
substantial increases in soil P-availability with increased
grazing by rabbits or livestock because rabbits create sub-
stantial soil disturbance, which exposes P-rich subsoil
(hypothesis 3), and high levels of livestock grazing results
in the concentration of P-rich dung (Duncan et al., 2008;
hypothesis 4). Finally, we predicted that increased livestock
grazing would be associated with substantial reductions in
plant production (hypothesis 5).

METHODS
Study Area

The study was undertaken in south-eastern Australia
(Figure 2). Landforms in the study area are predominantly
plains of coarse colluvium, and low ridges and valleys and
slopes to 3%. The soils are dominated by well-drained gra-
dational red loams and red-brown duplex soils with neutral
to slightly acidic surfaces (pH 5-7; Thompson & Eldridge,

Copyright © 2017 John Wiley & Sons, Ltd.

2005). The climate across the area is Mediterranean and typ-
ically semi-arid (Table II). Mean annual rainfall varies from
385 to 460 mm and ranges from being evenly distributed
throughout the year in the east and central parts of the study
area to 20% more rainfall during the six cooler months in the
south and south-west. Average temperature in the study area
ranges from 9°C to 12°C for May to September and from
18°C to 24°C for October to April, and the mean annual
temperature between 15°C and 18°C.

Site Selection, Woody Cover, Grazing Intensity and Aridity

Between September and November 2013, we surveyed 151
sites that were characterised by the community dominant
Callitris glaucophylla Joy Thomps. & L. A. S. Johnson
(Figure 2). The study sites were first identified using Arc
GIS and pre-inspected to ensure that they were more than
250 m from any road. In order to sample across a full spec-
trum of grazing intensities, we selected some low intensity
and long ungrazed sites from conservation reserves, road
verges with intermittent grazing, commercial forests, conser-
vation reserves and long-term grazing exclosures as well as
high-intensity grazed sites (Table II). At each site, we posi-
tioned a 200-m-long transect within which were placed five
25-m? (5 m x 5 m) plots (hereafter ‘large quadrat’) every
50 m (i.e. 0, 50, 100, 150 and 200 m). A smaller (0-5 m
x 0-5 m) quadrat (hereafter, ‘small quadrat’) was located in
the centre of the large quadrat. Along the line transect, the
projected cover of trees (>3 m tall) and shrubs (0-5-3 m)
was recorded at 100 points every 2 m to provide a measure
of woody (tree + shrub) cover. We also measured the width
and depth of all livestock tracks crossing the 200-m transect.
We used the total cross-sectional area, averaged to a 100-m
transect (cm?/100 m) of stock tracks as a proxy of historic
(long-term) grazing.

In order to assess recent grazing intensity at the sites, we
identified and counted dung/pellets in both of the small and

LAND DEGRADATION & DEVELOPMENT, (2017)
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Figure 2. (a) Location of the 151 sites in eastern Australia and (b) a view of

a typical Callitris glaucophylla woodland showing mature trees (back-

ground) and young saplings (foreground). [Colour figure can be viewed at
wileyonlinelibrary.com]

large plots separately by herbivore type. Kangaroo
(Macropus spp.), rabbit (i.e. rabbits and hares; Oryctolagus
cuniculus L. and Lepus europaeus Pallas) and sheep (which
included sheep Ovis aries L. and goats Capra hircus L.)
dung/pellets were counted in the small quadrats, and cattle
dung (Bos taurus L.), sheep and kangaroo dung/pellets
counted in the large quadrats. For cattle, we counted dung
events rather than individual fragments, that is, we consid-
ered a number of small fragments to have originated from
one dung event, if the fragments were within an area of a
few metres. Dung and pellet samples of each type were col-
lected, oven dried at 40°C for 24 h and weighed to estimate
the mass of individual pellets, or in the case of cattle, dung
events. Average mass of dung was then used to calculate
the total mass of each type of dung per hectare. We used

Copyright © 2017 John Wiley & Sons, Ltd.

algorithms, developed previously for the study area
(Eldridge ef al., 2016a, 2016b), to calculate the total oven-
dried mass of dung per hectare per herbivore on the basis
of the number of pellets recorded in the field. This total
oven-dried mass of dung was used as our measure of recent
grazing intensity for each herbivore (Eldridge et al., 2016a,
2016b). Where dung from the same herbivore was assessed
in both the large and small quadrats, we derived an average
mass per hectare on the basis of the large quadrat for that
herbivore type. We used dung as a measure of recent grazing
because dung persists for about 3 years in the field before it
is decomposed. Thus, it is a useful proxy of short-term graz-
ing by herbivores. Stock tracks provide a long-term inte-
grated history of continued use by livestock.

Aridity was calculated as 1 — Al where Al =
precipitation/potential evapotranspiration using Food and
Agriculture Organization’s global aridity map (http://ref.
data.fao.org/map). Subtracting Al from 1 changes the direc-
tion of the index such that larger values are more arid.

Assessment of Soil Health and Plant Production (Biomass)

We assessed the status and morphology of the soil surface
within the small quadrats using rigorous, field-based proto-
cols (Tongway, 1995). Within the small quadrats, we mea-
sured 11 soil surface attributes: surface roughness, crust
resistance, crust brokenness, crust stability, surface integrity
(cover of uneroded surface), cover of deposited material
(e.g. sand), biocrust cover, plant basal cover, litter cover, lit-
ter origin and the degree of litter incorporation (Table S1).
From these data, we calculated a soil health index as the
mathematical mean of the 11 attributes following
standardisation (z-transformation).

To estimate plant production, we took oblique photo-
graphs of all small quadrats, then clipped, oven dried (45°
C for 24 h) and weighed all above-ground material rooted
within the small quadrats at the 50-m mark along the tran-
sect. Biomass values for all small quadrats were then esti-
mated and calibrated against the 151 actual biomass values
using the photostandards. Using this double-sampling ap-
proach, the predictive power, on the basis of a second-order
polynomial, was R? = 0-69.

Soil Sampling and Analyses

During the field survey, we collected about 500 g of soil,
from the surface 5 cm, from the centre of each small quadrat.
A total of 755 soil samples were analysed in this study, from
151 sites. The soil samples were air dried and passed
through a 2-mm sieve to remove roots, organic debris and
stones prior to chemical analyses. Total C and N were
assessed using high-intensity combustion (LECO CNS-
2000; LECO Corporation, St. Joseph, MI, USA), available
(Olsen) P according to Colwell (1963). Labile carbon was
assessed by measuring the change in absorbance when
slightly alkaline KMnO, reacts with the most readily
oxidisable (active) forms of soil C to convert Mn (VII) to
Mn (II; Weil et al., 2003). Ammonium and nitrate concen-
trations were measured using flow injection analysis

LAND DEGRADATION & DEVELOPMENT, (2017)
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Table II. Mean, standard deviation, minimum and maximum values of relevant attributes and response variables used in the structural equa-

tion models

Attribute Mean SD Min Max
Aridity 0-36 0-08 0-19 0-63
Soil health index (%) 44-1 83 17-4 80-2
Grazing intensity
Livestock tracks area (cm” 100 m ™ ') 1227 319-0 0-0 3060-0
Mass of cattle dung (kg ha™") 142-0 481-1 0-0 45395
Mass of sheep/goat dung (kg ha ") 121 40-2 0-0 3027
Mass of kangaroo dung (kg ha™") 528 41-6 0-5 270-2
Mass of rabbit dung (kg ha™") 12:2 29-1 0-0 232-8
Plants
Woody cover (%) 419 22-6 4-0 116-0*
Plant biomass (t ha ') 1-14 0-63 0-19 3-16
Soil enzymes
B-glucosidase (nmol g™" soil ™' h™") 74-0 349 97 192-8
Cellobiosidase (nmol g~' soil ™' h™") 63-4 327 8-8 1763
N-acetyl-p-glucosaminidase (nmol g~ soil ' h™") 66-6 333 89 179-8
Phosphatase (nmol g~ soil ™' h™") 112:9 44.5 263 248-8
Soil chemistry
Labile carbon (mg kg ') 4362 105-7 221-0 6587
NH, (mg L™ 1-74 1-09 0-51 7-09
NO; (mg L™ 095 1-46 0-05 9-59
Colwell P (mg kg71 soil) 14-37 847 4.55 5520
Total C (%) 2-08 0-73 0-79 4.54
Total N (%) 0-15 0-04 0-08 0-30

“Woody (shrub + tree) cover can exceed 100% where shrubs occur beneath trees. Aridity = 1 — Food and Agriculture Organization aridity index.

(QuikChem® 8500; Lachat Instruments, Milwaukee, WI,
USA) following the extraction with 0-5 M K,SO,. For the
activity of the enzyme [-glucosidase, a mixture of 1 g of
air-dried soil and 33 ml of sodium acetate buffer (pH < 7-5)
was shaken at 200 rpm on an orbital shaker for 30 min, and
800 pl soil slurry was sampled and 200 pl substrate of 4-
methylumbelliferyl B-D-glucopyranoside solution was added
to the slurry. The 1000-pul (1 ml) solution was incubated at
25°C for 3 h, and the activity (nmol activity g~' dry
soil ! h™!) was measured at the 365-nm excitation wave-
length and 450 nm of emission wavelength in a microplate
reader. The same procedure was used, but with different
substrate solutions, for an additional three enzymes. Thus
4-methylumbelliferyl p-D-cellobioside was used for
cellobiosidase, 4-methylumbelliferyl N-B-D-glucosaminide
for N-acetyl-B-glucosaminidase and 4-methylumbelliferyl
phosphatase for phosphatase activity (Bell et al., 2013).

Ecosystem Services Scoring

In this study, we used the term ‘ecosystem function’ to de-
fine the 11 individual functions that we measured. The term
‘ecosystem service’ or service refers to an assemblage of
functions grouped according to similar functions that they
perform, for example, N-availability. The 11 separate func-
tions were grouped into five services, as follows: C-storage
(total C and labile C), N-availability (total N, ammonia
and nitrate), P-availability (Colwell P only), decomposition
(extracellular enzyme activities of [-glucosidase,
cellobiosidase and B-N-acetylhexosaminidase and phospha-
tase) and plant biomass (plant biomass only). Decomposi-
tion, C-storage, and N-availability and P-availability are

Copyright © 2017 John Wiley & Sons, Ltd.

regulating services, and biomass is a provisioning service
(MEA, 2005). Carbon storage and N-availability and P-
availability are proxies of ecosystem processes such as C se-
questration and N and P mineralisation. In the case of avail-
able P, note that while total P is considered a soil property
(mainly provided by bedrock), available P is the result of P
mineralisation and solubilisation of soil organic matter and
minerals in the bedrock, a process conducted by plant roots
and microbial communities. The index of each service was
calculated by averaging the standardised (z-transformed)
value of each function for each site into a single metric
(multifunctionality sensu Maestre et al., 2012; Soliveres
et al., 2014; Delgado-Baquerizo ef al., 2016a, 2016b; Zhang
et al., 2016). This allowed us to transform all services to a
common scale of standard deviation units (Maestre et al.,
2012). Integrating or averaging the standardised multiple
functions into a single metric for overall ecosystem enables
compensation of the decrease in one or several function by
the increase of one or several functions (Gamfeldt et al.,
2008; Quero et al., 2013); therefore, it is a highly informa-
tive quantitative measure of the overall ecosystem
performance.

Statistical Analyses and Modelling

Structural equation modelling (SEM) was used to build a
system-level understanding on the effects of grazing and
aridity on the ecosystem services. An a priori model
(Figure 1a; Table I) was applied to the five ecosystem ser-
vice indices. In the model, grazing and aridity were included
as the main factors on the ecosystem services, directly and
indirectly via soil health and tree cover. In our models, the

LAND DEGRADATION & DEVELOPMENT, (2017)
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effects of recent and historic grazing were combined into a
single composite variable (‘grazing’). Increases in this com-
posite variable corresponded to increasing grazing intensity.
The use of composite variables does not alter the underlying
SEMs but collapses the effects of multiple, conceptually re-
lated variables into a single combined effect, aiding the in-
terpretation of model results (Grace, 2006). The SEM
allowed us to partition direct and indirect effects of one var-
iable upon another and to estimate the strengths of these
multiple effects.

We included woody cover, aridity, soil health and grazing
in our models because we considered them to be the most in-
formative predictors of ecosystem services out of a suite of
many potential predictors. We are aware, however, that other
variables not considered here could have been included, such
as trampling by cattle or the number of pits dug by rabbits.
These may have provided additional insights into the mech-
anisms underlying grazing effects on ecosystem services.
To improve normality, we standardised (z-transformed)
values for soil health, woody cover, aridity and grazing prior
to analyses. Overall goodness-of-fit probability tests were
performed to determine the absolute fit of the best models.
The goodness-of-fit test estimates the long-term probability
of the observed data given the a priori model structure. Thus,
high probability values indicate that these models are highly
plausible causal structures underlying the observed correla-
tions. All SEM analysis was conducted using AMOS soft-
ware version 20 (IBM Corporation, Armonk, New York,
USA). The stability of these models was evaluated as de-
scribed in Reisner et al. (2013).

RESULTS
Aridity (I — aridity index) at our study sites ranged from

0-19 (dry subhumid) to 0-63 (arid), with a mean value of

61 (a) N-availability

s (d) Plant biomass

0.2 4
0.0 4
0.2 r

0.4

Standardised total effects (unitless)

08 4

b) C-storage
; ﬂ-.l -ﬂ: __~L_’_‘

e) Decomposition

0-36 (semi-arid; Table II). Average soil health index and
woody cover values were 44-1% and 41-9%, respectively.
Recent grazing intensity data, as measured by the mass of
herbivore dung, varied markedly, from no grazing at some
sites to more than 4-5 t ha™' of dung at one site grazed by
cattle. Kangaroos were the only herbivore to be recorded
at all 151 sites. Plant biomass varied markedly (0-19 to
3-16 t ha~') with a mean of 1-14 t ha™', typical of these
semi-arid woodlands. Soil enzyme concentrations ranged
from 63 (cellobiosidase) to 112-9 nmol g~' h™' (phospha-
tase). Total N (0-15%) and C (2-08%) reflected typically
low values found for eastern Australian rangelands.

Effects of Grazing on Multiple Ecosystem Services

Grazing had moderate to strong direct and positive effects
on all services (Figure 1b—f), but also strong, indirect nega-
tive effects on N-availability, C-storage and plant biomass,
via a suppression of the positive effects of soil health on
these three services (Figure 1b—c, e). Conversely, the indi-
rect effect of grazing was positive on P-availability via re-
ductions in soil health (Figure 1d). The standardised total
effects (STEs) from the SEM, that is, the sum of all direct
and indirect effects, indicated a general positive effect of
grazing on N-availability, which was due mainly to sheep
and cattle (Figure 3a), but an overall neutral effect on C-
storage (Figure 3b). Grazing had an overall positive effect
on P-availability, owing mainly to rabbit grazing (Figure 3
c¢). Conversely, for plant biomass, the overall effect of graz-
ing was negative, although there was evidence of an increase
in plant biomass resulting from increased rabbit grazing
(Figure 3d). The overall positive effects of grazing on de-
composition resulted from increases in historic grazing
(track; Figure 3e). Overall, grazing effects were positive
for C-storage, and N-availability and P-availability but neg-
ative for plant biomass and neutral for decomposition.

) P-availability

I Aridity

I Cattle (R)
[ Sheep(R)

L | Tracks (H)
HEl Rabbits (R)
I Kangaroos (R)
[ Soil health
[ Woody cover

Figure 3. Standardised total effects (STE) of aridity, the five measures of grazing, soil health and woody cover on the five ecosystem services indices. The STE
is the sum of direct and indirect effects on a particular response variable. R = recent grazing, represented by cattle, sheep, kangaroos and rabbits. H = historic
grazing, represented by tracks. [Colour figure can be viewed at wileyonlinelibrary.com]
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Effects of Aridity on Multiple Ecosystem Services

Increasing aridity was associated with reduced soil health
and lower cover of woody plants, but its effects on various
services were mixed (Figure 1). There were significant
negative and direct effects of aridity on N-availability and
C-storage (Figure 1b, c¢) and decomposition (Figure 1f). In-
creasing aridity suppressed the positive effect of soil health
for N-availability and C-storage (Figure 1b—c) and plant bio-
mass (Figure le). However, increasing aridity had indirect
positive effects on P-availability via reductions in woody
plants and soil health (Figure 1d). In general, the sum of
all direct and indirect effects or the STE of aridity was neg-
ative for four of the five services, and the only positive effect
was observed for P-availability (Figure 3).

DISCUSSION

Our results indicate that aridity had a strong suppressive ef-
fect on all functions and services, except P-availability,
whereas the effects of grazing ranged from positive to nega-
tive or neutral. The effect of aridity was strong, despite the
relatively short gradient in our study (0-19 to 0-63). Further,
different herbivores had different effects on specific ser-
vices, with livestock associated with greater N-availability
and decomposition, and rabbits with greater P-availability
and plant biomass. Management of critical services and
functions associated with plant production and C-storage,
and N-availability and P-availability need to consider not
only the effects of grazing by different herbivores but also
the effects of changing climates on these attributes.

Grazing Effects on Plant Biomass

Plant production is the attribute most strongly influenced by
livestock grazing (herbivory: Milchunas & Lauenroth, 1989;
Charles et al., 2016; Eldridge et al., 2016a, 2016b), so re-
ductions in biomass with increasing grazing are expected.
The STEs indicated that the overall effects of kangaroo
grazing on plant biomass were largely neutral (Figure 3d),
consistent with studies of kangaroo effects on soil health
(Eldridge ef al., 2016a, 2016b). Livestock grazing resulted
in reductions in plant biomass, but increasing rabbit grazing
was associated with increased plant biomass. This might at
first seem counterintuitive, but rabbit grazing has been
shown to suppress small forbs and grasses at the expense
of large, high biomass Mediterranean weeds (Myers &

Poole, 1963). Examination of sites in our study with a high
intensity of rabbit grazing (i.e. sites with a mass of rabbit
dung > 100 kg ha™") showed that they were dominated by
annual or biennial weedy plants of high biomass and cover
such as Echium plantagineum L., Stipa scabra Lindl.,
Hordeum leporinum Link and Arctotheca calendula Levyns,
typically exotic plants (Table III). Most importantly, as
discussed more fully later, rabbits had a positive effect on
the amount of available P in the soil (Figure 3). Soil P is
the main limiting soil nutrient in the largely weathered old
soils from Australia (Lambers ef al., 2008); thus, by bring-
ing back soil available P to the surface, rabbits may promote
the productivity of these sites.

Grazing and Aridity Effects on C-storage

Grazing and aridity had direct and contrasting effects on C-
storage, with positive effects of grazing and negative effects
of increasing aridity (Figure 1c). We also found strong, indi-
rect negative effect of grazing and aridity via the suppres-
sion of the positive effects of soil health on this service.
The STEs for C-storage indicated that there is an overall
neutral effect of grazing, but a substantial negative effect
of aridity on C-storage (Figure 3b), consistent with other
studies (Delgado-Baquerizo et al., 2013b; Rabbi et al,
2015). Studies of grazing exclosures have shown few differ-
ences in total C-storage after 15 years between ungrazed and
grazed sites (Nosetto ef al, 2006). Similarly, Rabbi et al.
(2015) showed that land use in drylands in eastern
Australia had a relatively neutral effect on C-storage,
explained only 1-4% of the total variation in C-storage. This
contrasted with aridity, which, along with soil clay content,
explained 64% of the variation in C-content. Ecosystem ser-
vices other than C-storage, however, are likely to be more
strongly influenced by differences in land management.

Grazing and Aridity Effects on N-availability

Overall, grazing had a positive effect on N-availability, that
is, increased nitrate, ammonium and total N; and this was
due mainly to sheep/goat and cattle grazing (Figure 3a). In-
creased grazing intensity was associated with direct positive
effects on N-availability, but indirect suppressive effects, via
reductions in soil health (Figure 1b). The addition of nitrate
and ammonium from urine and dung, particularly at live-
stock resting camps, could partly account for the direct
effects of grazing on N-availability. Although much of the

Table III. Mean cover (%) of plant taxa occurring at sites with a high intensity of rabbit grazing (dung > 100 kg ha™")

Species Group Origin Life cycle Response to grazing Cover (%)
Echium plantagineum L. Forb Exotic Annual Increase 16-7
Stipa scabra Lindl. Grass Native Biennial Benign 139
Hordeum leporinum Link Grass Exotic Annual Increase 12-4
Arctotheca calendula Levyns Forb Exotic Annual Increase 99
Vulpia spp. Grass Exotic Annual Increase 4.8
Erodium crinitum Carolin Forb Native Annual Increase 4.8
Sisymbrium irio L. Forb Exotic Annual Increase 4-0
Trifolium arvense L. Forb Exotic Annual Increase 4-0

Copyright © 2017 John Wiley & Sons, Ltd.
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nitrate is lost via volatilisation (Powell et al., 1998), addition
of dung and urine (i.e. ammonia) provides a source of read-
ily available nutrients for plants and microbes (Augustine
et al., 2003; Schrama et al., 2013). In support of this, we
found that grazing intensity increased the NH4:NOj ratio
(Figure S1), although the strength of the relationship was
weak (R? = 0-08). The mechanism underpinning the indirect
suppressive effect of grazing on N-availability may relate to
reductions in soil surface roughness and integrity, biocrust
cover, the depth and incorporation of the litter layer
(Eldridge et al., 2016a, 2016b). Biocrusts are essential com-
ponents of soil health, and cyanolichens and cyanobacteria
in biocrusts are known to fix atmospheric C and N, account-
ing for the strong effect of increased soil health on both C-
storage and N-availability, particularly in arid and semi-arid
systems (Delgado-Baquerizo et al., 2014, 2016a). In our
study, increases in this ratio were linked to increases in the
intensity of kangaroo grazing but reductions in cattle
grazing.

Grazing Effects on P-availability

Phosphorus cycling was one of the ecosystem services less
affected by increasing aridity and grazing intensity. Unlike
C and N, P is an abiotically derived element, and its avail-
ability has been shown to increase when P-rich parent mate-
rial is exposed, often via soil erosion (Delgado-Baquerizo
et al., 2013b). Interestingly, rabbit grazing had the strongest
stimulatory effect on P-availability (Figure 3c). Production
of phosphatase is extremely costly in terms of N and C.
Thus, microbes and plants only produce phosphatase when
it is really needed. If rabbits are providing a directly avail-
able form of P, such as PO3 to plant and microbes by, for
example, exposing bedrock or dung, then it is likely that
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phosphatase production will be inhibited. Indeed, P is a rel-
atively large component of rabbit dung, with five times more
P in rabbit than in sheep or cattle dung (http://www.
crossroadsrabbitry.com/rabbit-manure-info/). This explains
the decoupling of phosphatase from inorganic P-availability.
Kangaroo dung is known to contribute relatively high
levels of total P to floodplain systems (Kobayashi et al.,
2011), but in our study, kangaroo effects on P-availability
were neutral. This may be due to slow breakdown of pellets
in our system compared with floodplains, owing to low
levels of soil moisture (Davis & Coulson, 2016). Thus, in-
creased P could have resulted from the concentration of rab-
bit dung, such as what occurs in rabbit latrines (Dixon &
Hambler, 1993), or the localisation of dense patches of dung
in litter dams on sloping surfaces following overland flow
(Mitchell & Humphreys, 1987). The most parsimonious ex-
planation, however, is that P-rich subsoil is exposed during
the construction of the extensive communal burrow systems
of rabbits. The relatively low to neutral pH values of these
soils would have made P more available because there is lit-
tle soil calcium to bind onto the P (Lajtha & Bloomer,
1988). Overall, therefore, increases in rabbit grazing are
likely to lead to increases in P, with resulting changes in
the stoichiometry of P and N in some local areas from
Australia (Delgado-Baquerizo ef al., 2013b; Figure S2).

Organic Matter Decomposition

We detected small declines in decomposition, our measure
of enzyme activity, with increasing aridity and grazing.
Aridity suppressed, and grazing slightly increased, all en-
zyme functions except phosphatase (Figure 4). Previous
studies have shown that overgrazing reduces phosphatase
and beta-glucosidase, but that effects likely depend on the
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Figure 4. Structural equation model for extracellular enzyme activities: (a) B-glucosidase, (b) cellobiosidase, (c) NAG (N-acetyl-B-glucosaminidase) and (d)
phosphatase including the standardised total effects of aridity, measures of grazing, soil health and woody cover. STE, standardised total effect.
[Colour figure can be viewed at wileyonlinelibrary.com]
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patch type in which measurements are made (Zhang et al.,
2016). In our study, the decomposition service, and the four
individual enzymatic functions, was associated with live-
stock tracks, our measure of historic grazing. Grazing is typ-
ically associated with declines in enzyme activity (e.g.
Prieto et al., 2011; Olivera et al., 2014), so it is somewhat
counterintuitive that increased grazing in our study was as-
sociated with increased enzyme activity. The STEs indicated
that historic grazing (i.e. livestock tracks), rather than recent
grazing (i.e. dung from livestock), was linked to increases in
the decomposition function (Figure 3e). Our measure of his-
toric grazing could be a proxy for increasing soil texture
given that livestock tracks would be more pronounced in
finer soils. Equally plausible is that increased historic graz-
ing is linked to larger pools of herbivore urine and dung
and therefore greater levels of decomposition. Also, herbi-
vores break down organic matters such as plant litter
through hoof action, and this may enhance the decomposi-
tion process. Overall, however, grazing-linked increases in
decomposition were matched by declines due to increasing
aridity, which would reduce decomposition rates and there-
fore nutrient cycling functions (Maestre et al., 2015;
Delgado-Baquerizo ef al., 2016b).

Stronger Negative Effects of Aridity on Services than
Grazing

Aridity levels are predicted to increase into the next cen-
tury and lead to substantial shifts in plant and microbial
processes in drylands (Delgado-Baquerizo et al., 2014;
Maestre et al., 2016). This will likely reduce Earth’s ca-
pacity to support essential ecosystem functions and ser-
vices associated with the storage and availability of C
and N, and the production of forage for livestock (Maestre
et al., 2016). In our study, increasing aridity was associ-
ated with an increase in P-availability, but reductions in
the other four functions, with the greatest reduction in C-
storage (STE = —0-54; Figure 3b) and N-availability
(STE = —0-31; Figure 3a). Increasing aridity was also as-
sociated with indirect suppression of N-availability, C-
storage and plant biomass via reductions in soil health
(Figure 1b—c, e). Declines in N-availability with aridity
were matched by strong increases due to grazing. Predicted
reductions in grazing capacity with increased aridity are
therefore likely to lead to global reductions in N-
availability. The shift from free-range grazing to feedlots
will likely lead to reductions in C emissions and may also
reduce farm-level N deposition, but the positive effects of
reduced N-availability will likely be more apparent under
less arid conditions (Giese et al., 2011). The effect of arid-
ity was also to suppress the negative effects of woody
plants on plant biomass. This could occur by removing
competition for light or soil moisture, allelopathic effects
that exist in some Eucalyptus species (Zhang & Fu,
2009), or suppression resulting from below-ground re-
source competition from C. glaucophylla (Harris et al.,
2003). Changes in land management may not lead to in-
creased levels of ecosystem services owing to the strong

Copyright © 2017 John Wiley & Sons, Ltd.

negative effect of aridity on most services. Thus, services
are likely to decline over the next century as aridity
increases.

Conclusions

The effects of grazing on ecosystem services are herbivore
specific and vary from positive to neutral or negative. Criti-
cal functions associated with decomposition and nutrients
cycling declined with increasing aridity, and these effects
were of a greater magnitude than any effects due to grazing.
Our study suggests that changes in land management may
fail to compensate for the negative effects of aridity on all
functions other than P-availability. Thus, strategies to man-
age ongoing climate change are likely to be a priority of
governments as we move towards a drier world.
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